• Title/Summary/Keyword: penalty technique

Search Result 117, Processing Time 0.022 seconds

A brief review of penalty methods in genetic algorithms for optimization

  • Gen, Mitsuo;Cheng, Runwei
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.30-35
    • /
    • 1996
  • Penalty technique perhaps is the most common technique used in the genetic algorithms for constrained optimization problems. In recent years, several techniques have been proposed in the area of evolutionary computation. However, there is no general guideline on designing penalty function and constructing an efficient penalty function is quite problem-dependent. The purpose of the paper is to give a tutorial survey of recent works on penalty techniques used in genetic algorithms and to give a better classification on exisitng works, which may be helpful for revealing the intrinsic relationship among them and for providing some hints for further studies on penalty techniques.

  • PDF

An Optimization Technique For Crane Acceleration Using A Genetic Algorithm (유전자알고리즘을 이용한 크레인가속도 최적화)

  • 박창권;김재량;정원지;홍대선;권장렬;박범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1701-1704
    • /
    • 2003
  • This paper presents a new optimization technique of acceleration curve for a wafer transfer crane movement in which high speed and low vibration are desirable. This technique is based on a genetic algorithm with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The proposed penalty function makes the convergence rate of optimization process using the genetic algorithm more faster than the case of genetic algorithm without a penalty function. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration.

  • PDF

Bending Analysis of Mindlin-Reissner Plates by the Element Free Galerkin Method with Penalty Technique

  • Park, Yoo-Jin;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.64-76
    • /
    • 2003
  • In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner plates by using the element-free Galerkin method. A penalized weak form for the Mindlin-Reissner Plates is constructed through the exterior penalty method to enforce the essential boundary conditions of rotations as well as transverse displacements. In the numerical examples, some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the order of integration and the size of influence domain are also carried out. The effect of the types of background cells on the accuracy of numerical solutions is observed and a proper type of background cell for obtaining optimal accuracy is suggested. Further, optimal order of integration and basis order of Moving Least Squares approximation are suggested to efficiently handle the irregularly distributed nodes through the triangular type of background cells. From the numerical tests, it is identified that unlike the finite element method, the proposed element-free Galerkin method with penalty technique gives highly accurate solution without shear locking in dealing with Mindlin-Reissner plates.

The Moderating Role of Attribution in Penalty Judgment: An Empirical Study in the Financial Service Industry

  • Kim, Young "Sally" K.
    • Journal of Global Scholars of Marketing Science
    • /
    • v.16 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • Many financial service organizations use various types of penalties (e.g., late payment fee, overdraft fee), often inflicting customer complaints and, in extreme cases, attrition. This study examines how customers evaluate penalties using concepts from attribution theory and literatures of social justice and customer satisfaction/dissatisfaction. The study hypothesizes that both cognitive (i.e., attribution, perceived fairness, disconfirmation) and affective (i.e., emotion) responses influence customer's penalty judgment and tests the effect of moderation between attribution and perceived fairness on penalty judgment. The study uses a cross sectional survey design and collects data using the critical incident technique. The results show that attributions have significant moderating effects on the relationship between perceived fairness and dissatisfaction with the penalty and that perceived fairness, emotion, and attribution have a significant influence on penalty evaluation. The study provides discussion of the findings and managerial implications.

  • PDF

Development of Genetic Algorithms for Efficient Constraints Handling (구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발)

  • Cho, Young-Suk;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique

  • Ghannadpour, S.A.M.;Mehrparvar, M.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • The aim of this study is to obtain the nonlinear and post-buckling responses of relatively thick functionally graded plates with oblique elliptical cutouts using a new semi-analytical approach. To model the oblique elliptical hole in a FGM plate, six plate-elements are used and the connection between these elements is provided by the well-known Penalty method. Therefore, the semi-analytical technique used in this paper is known as the plate assembly technique. In order to take into account for functionality of the material in a perforated plate, the volume fraction of the material constituents follows a simple power law distribution. Since the FGM perforated plates are relatively thick in this research, the structural model is assumed to be the first order shear deformation theory and Von-Karman's assumptions are used to incorporate geometric nonlinearity. The equilibrium equations for FGM plates containing elliptical holes are obtained by the principle of minimum of total potential energy. The obtained nonlinear equilibrium equations are solved numerically using the quadratic extrapolation technique. Various sets of boundary conditions for FGM plates and different cutout sizes and orientations are assumed here and their effects on nonlinear response of plates under compressive loads are examined.

A Software And Hardware Scheme For Reducing The Branch Penalty In Parallel Computers (병렬구조 컴퓨터에서 Branch penalty를 감소시키기 위한 소프트웨어와 하드웨어 방법)

  • 함찬숙;조종현;조영일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.11-16
    • /
    • 1993
  • VLIW architecture capable of testing multiple conditions in a cycle must support an efficient mechanism for multi-way branches. This paper proposes a mechanism to speed up the execution of multi-way branches and an efficient memory packing method of instructions, which reduced the wasted memory space. Also, we develops a new compiler technique which can transform program segments that are not applied to multi-way branches into ones that are applied to multi-way branches. The benefits gained by the transformation are to reduce branch penalty and to increase instruction-level parallelism.

  • PDF

Acceleration Optimization of a Dynamic Structure Using a Genetic Algorithm (유전자 알고리즘을 이용한 동적 구조물의 가속도 최적화)

  • 정원지;박창권;홍대선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.25-32
    • /
    • 2004
  • This paper presents a new optimization technique of acceleration curve for dynamic structure's movement in which high speed and low vibration are desirable. This technique is based on a genetic algerian with a penalty function for acceleration optimization under the assumption that an initial profile of acceleration curves constitutes the first generation of the genetic algorithm. Especially the penalty function consists of the violation of constraints and the number of violated constraints. The optimized acceleration of the crane through the genetic algorithm and commercial dynamic analysis software has shown to have accurate movement and low vibration compared to the conventional accelerations with jerk discontinuity.

Reduction of the Power Penalty Induced by Low-Frequency Tone Using Variable Decision Threshold Technique

  • Lee, Chang-Hee;Kim, Sung-Man;Baik, Jin-Serk;Park, Kun-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.105-107
    • /
    • 2002
  • We propose 'variable decision threshold technique' to decrease the power penalty induced by low-frequency tones. The proposed scheme uses a simple low-speed receiver to change the decision threshold of the optical receiver according to the low-frequency tones. We demonstrate the proposed method at 2.5 Gb/s.