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Abstract : Penalty technique perhaps is the most
common technique used in the genetic algorithms
for constrained optimization problems. In recent
years, several techniques have been proposed in the
area of evolutionary computation. However, there
is no general guideline on designing penalty func-
tion and constructing an efficient penalty function
is quite problem-dependent. The purpose of the
paper is to give a tutorial survey of recent works
on penalty techniques used in genetic algorithms
and to give a better classification on existing works,
which may be helpful for revealing the intrinsic
relationship among them and for providing some
hints for further studies on penalty techniques.
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| 1 Introduction

Genetic algorithms have been receiving an increas-
ing attention as a novel optimization techniques for
constrained optimization problems [1]. The cen-
tral problem of applying genetic algorithms to con-
strained optimization is how to handle constraints
because genetic operators used to manipulate the
chromosomes often yield infeasible offspring. Re-
cently, several techniques have been proposed to
handle constraints in genetic algorithms. For re-

specialized genetic operators to maintain the fea-
sibility of chromosomes. These strategies have the
advantage that they never generate infeasible solu-
tions but have the disadvantage that they consider
no points outside the feasible regions. For highly
constrained problem, infeasible solution may take
a relatively big portion in population. Glover has
suggested that constraint management techniques
allowing movement through infeasible regions of
the search space tend to yield more rapid opti-
mization and produce better final solutions than
do approaches limiting search trajectories only to
feasible regions of the search space [4]. The penal-
izing strategy is such a kind of technique proposed
to consider infeasible solutions in genetic search.
Penalty technique perhaps is the most common
technique used in the genetic algorithms for con-
strained optimization problems. In essential, this
technique transforms the constrained problem into
an unconstrained problem by penalizing infeasible
solutions. The main issue of penalty strategy is
how to design the penalty function p(z) which can
effectively guide genetic search towards to promis-
ing area of solution space. Several techniques have
been proposed in the area of evolutionary compu-
tation. However, there is no general guideline on
designing penalty function. Constructing an effi-
cient penalty function is quite problem-dependent.
The purpose of the paper is to give a brief review

cent survey papers on the problem we refer to Michalewédzmajor recent works on penalty techniques used

[2,3]. The existing techniques can be roughly clas-
sified as follows:

e rejecling strategy

e repairing stralegy

e modifying genetic operators sirategy

e penalizing strategy

Each of these strategies have advantages and dis-
advantages. Rejecting strategy discards all infea-
sible chromosomes throughout whole evolutionary
process. Repairing strategy depends on the exis-
tence of a deterministic repair procedure to con-
verting an infeasible offspring into a feasible one.
With the modifying genetic operators sirategy, one
has to invent problem-specific representation and

in genetic algorithms and also to give a better clas-
sification on existing works, which may be helpful
for revealing the intrinsic relationship and provid-
ing some hints for further studies on penalty tech-
niques.

2 Nonlinear Programming

Nonlinear programming deals with the problem of
optimizing an objective function in the presence
of equality and inequality constraints. Nonlinear
programming is an extremely important tool used
in almost every area of engineering, operations re-
search, and mathematics because many practical



problems cannot be successfully modeled as a lin-
ear program. The general nonlinear programming
model can be written as follows:

max  f(z) (1)
s. t. gi() <0, 7=1,2,---,q (2)
hj(z):[), 7j=12,---,m (3)
zeX (4)
where f(z) is the objective function, constraints (2)

is the tnequality constraint, and constraints (3) is
the equality constraint. The set X is the domain
constraint, which might typically include lower and
upper bounds on the variables. A vector 2 € X sat-
isfying all the constraints is called a feasible solu-
tion to the problem. The collection of all such solu-
tions forms the feasible region. The nonlinear pro-
gramming problem then is to find a feasible point
& such that f(2) < f(&) for each feasible point =.
Such a point is called an optimal solution.

In general, solution space contains two parts:
feasible area and infeasible area. Unlike conven-
tional solution methods for nonlinear programming,
we do not make any assumption about these sub-
spaces; in particular, they need not be convex or be
connected as shown in Figure 1. Penalizing infeasi-
ble chromosomes is far from trivial. From the figure
we can know that infeasible solution b is much near
to optima a than infeasible solution d and feasible
solution c. We may hope to give less penalty to b
than d even though it is a little far from feasible
area than d. We also can believe that b contains
much more information about optima than ¢ even
though it is infeasible. However, we have no any
priori knowledge about optima, so generally it is
very hard for us to judge which one is better than
others.
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Figure 1: Solution space: feasible area and infeasi-
ble area

3 Penalty function
3.1 Evaluation function with penalty
term

Penalty techniques transform the constrained prob-
lem into an unconstrained problem by penalizing

infeasible solutions. In general, there are two pos-
sible ways to construct the evaluation function with
penally term. One is to take the addition form ex-
pressed as follows:

eval(z) = f(=) + p(e) (8)

where z represents a chromosome, f(z) the ob-
Jjective function of problem, and p(z) the penalty
term. For maximization problems, we usually re-
quire that,

{p(Z) =0;

p(=) <0;

if # 1s feasible
otherwise

(6)

Let |p(2)|max and |f(®)|min be the maximum of
|p(2)| and minimum of |f(z)] among current pop-
ulation, respectively. We also require that

Ip(z)lmu < |f(#)|min (7)

to avoid negative fitness value. For minimization
problems, we usually require that,

{p(c) =0;

p(z) > 0;

if 2 is feasible
otherwise

(8)

The second way is to take the multiplication form
expressed as follows:

eval(e) = f(=) p(e) (9)

In this case, for maximization problems we require
that,

{p(z) =1

0<p(z) <L

if & is feasible
otherwise

(10)
and for minimization problems, we require that,

{p(Z) =1;

(=) > 1

if # is feasible
otherwise

(11)

Note that for the minimization problems, the fitter
chromosome have the lower value of eval(z). For
some selection methods, it is required to be trans-
formed into fitness values in order to ensure that
the fitter one has the larger values.

The central issue is how to design the penalty
function p(2) which can effectively guide genetic
search towards to promising area of solution space.
There is no general guideline on designing penalty
function and constructing an efficient penalty func-
tion is quite problem-dependent. Richardson and
Palmer suggested that [5]:

(1) Penalties which are functions of the distance
from feasibility are better performers than those which
are merely functions of the number of violated con-
straints.

(2) For a problem having few constraints and
few full solutions, penalties which are solely func-
tions of the number of violated constraints are not
likely to find solutions.



(3) Good penalty functions can be constructed
from two quantities, the mazimum completion cost
and the ezpected completion cost.

(4) Penalties should be close to the ezpected com-
pletion cost, but should not frequently fall below
the solutions found. When penalty often underesti-
mates the completion cost, then the search may not
find a solution.

The relationship between infeasible chromosome
and the feasible part of the search space plays a sig-
nificant role in penalizing infeasible chromosomes:
the penalty value is corresponding to the ’amount’
of its infeasibility under some measurement.

3.2 Classification on penalty function

Several handling infeasibility techniques have been
proposed in the area of evolutionary computation.
In general, we can classify them into two classes:

e constant penalty
o variable penalty

The constant penalty approach is known as less
effective for complex problem and most recent re-
search works put attention on the variable penalty.

In general, variable penalty approach contains
two components:

o variable penalty ratio
e penalty amount for the violation of consiraints

The variable penalty ratio can be adjusted accord-
ing to

o the degree of violation of constraints
e the iteration number of genetic algorithms

The first approach increases the penalty pressure
as the violation becomes severe, which leads to the
class of static penalty, and the second approach in-
creases the penalty pressure along with the growing
of evolutionary process, which leads to the class of
dynamic penalty as discussed by Michalewicz [3].

Essentially, penalty is a function of the distance
from feasible area. This can be given as the follow-
ing three possible ways:

e the function of absolute distance of a single

infeasible solution
e the function of relative distance of all infea-

sible solutions in current population
e the function of adaptive penalty term

Most methods take the first approach. For highly
constrained problem, the ratio of infeasible to fea-
sible solutions is relatively high at each generation.
In such cases, the second and third approach is
hopeful to make a good balance between the preser-
vation of information and the pressure for infeasi-
bility.

The penalty approaches can be further distin-
guished as

o problem-dependent
e problem-independent

Most penalties techniques belong to the class of
problem-dependent approach.

The penalty approaches also can be distinguished
as

e with parameter
o without parameter

Most penalties techniques belong to the class of
parameterized approach. It seems that the pa-
rameterized penalty functions incline to problem-
dependent one.

3.3 Homaifar, Qi and Lai’s method

Homaifar et al. have considered following nonlinear
programming problem [6]:

f(=)
g;i(=) >0,

and take the addition form of evaluation function.

eval(z) = f(=) + (=)

The penalty function is constructed with two com-
ponents: (1) variable penalty factor and (2) penalty
for the violation of constraints as follows:

min

s. t. j=12.---,m

0; if & is feasible
p(=) = ergj(z); otherwise (12)
i=1

where r; is a variable penalty coefficient for the
j-th constraint. For each constraint, they create
several levels of violation. Depending on the level
of violation, r; varies accordingly. However, deter-
mining the level of violation for each constraints
and choosing suitable values of r; are not an easy
task and problem-dependent.

Recent experiments of Michalewicz have indi-
cated thai the quality of solution heavily depends
on the values of these penalty coefficients [3]. If
the penalty coefficients are moderate, the algorithm
may converge to an infeasible solution; on the other
hand, if the penalty coefficients are too large, the
method is equivalent to rejecting strategy.

3.4 Joines and Houck’s method

Joines and Houck have considered the following
nonlinear programming problem [7]:

min f(=)
s. t. gi(#z) >0, ij=1,2,---,q
hj(z):o, j=q¢+1,2,---ym

and take the addition form of evaluation function.

eval(z) = f(=) + plk,2)



The penalty function is also constructed with two

components: (1) variable penalty factor and (2)

penalty for the violation of constraints as follows:
m

plk,2) = p7 Y () (13)

i=1

where k is the iteration of genetic algorithm, a and

B are parameters used to adjust the scale of penalty

value. The penalty term for single constraint d;(z)
is given as follows:

0; if @ is feasible
dG(e) = {lo(@)i 1<i<q(ifnot) (14)
lhi(z)l; ¢+1<j<m(if not)
Pk = C X k (15)

where C is a constant. The penalty on infeasible
chromosomes is increased along with evolutionary
process due to the term of p,. Comparing with
Homaifar, Qi and Lai’s method, the difference of
two methods is that variable penalty term varies
with the iteration of genetic algorithm for Joine
and Houck’s method while it varies according to
the the level of violation for Homaifar, Qi and Lai’s
method.

The results of experiments of Joines and Houck
indicated that the quality of the solution was very
sensitive to the values of the three parameters. How
to determine the variable penalty term is problem-
dependent and also it is necessary to design the
component with a proper dynamic property suit-
able for a given problem because this component
is constantly increased along with growing of gen-
erations which approaches to give infeasible chro-
mosomes death penalty at the later generation of
genetic algorithms. In the most experiments of
Michalewicz, the method converged in early gen-
erations due to this reason [3].

3.5 Michalewicz and Attia’s method

Michalewicz and Attia have considered the follow-
ing nonlinear programming problem [3]:

min f(=)
s. t. gi(#) <0, j=1,2,--.,q
hj(z)=0, j=q¢+1,2,--:,m

and take the addition form of evaluation function.
eval(z) = f(z) + p(r, =)

The penalty function is also constructed with two
components: (1) variable penalty factor and (2)
penalty for the violation of constraints as follows:

1 2
p(re) =53 die) (16)
JjEA
where A is the set of active constraints, which con-
sists all nonlinear equations and all violated nonlin-
ear inequalities. A constraint g;(z) is violated at

point & if and only if g;(2) > 6§ (j = p+1, couym),

where § is a parameter to decides whether a con-

straint is active or not. 7 is the variable penalty

component, called temperature. The penalty term

for single constraint d;(z) is given as follows:

d(z) - {max{oigj(z)}; for 1 <Ji<gq
! |k (=));

forg+1<jij<m (17)

They built a system called Genocop II with the
technique [8]. Note that Genocop II is realized with
the mechanism of SA-alike rather than GA. The
variable component 7, beginning with a starting
temperature 7o and ending at a freezing tempera-
ture 7y, decreases in steps of the main loop accord-
ing to a given cooling scheme. Genocop I is em-
bedded in the main loop used to find an improved
point. Within each execution of Genocop I, the
temperature 7 is fixed as a constant. The method
is quite sensitive to the values of the parameters.
The question of how to settle these parameters for
a particular problem remains open.

3.6 Smith, Tate and Coit’s method

The adapting penalty function is firstly proposed
by Smith and Tate [9], which can alter the magni-
tude of the penalty dynamically by scaling accord-
ing to the fitness of the best solution yet found. As
better feasible and infeasible solutions are found,
the penalty imposed on a given infeasible solution
will change. Coit and Smith further extended their
previous works in [10] and proposed the concept of
near-feasibility threshold (NFT). Exterior penalty
functions are characterized as being nondecreas-
ing functions of the “distance” of a given solution
from the feasible region. The NFT is the thresh-
old distance from the feasible region at which the
user would consider the search as “getting warm”.
The penalty function will encourage the GA to
explore within the feasible region and the NFT-
neighborhood of the feasible region, and discourage
search beyond that threshold.

They considered the following nonlinear pro-
gramming problem :

f(=)

gi(=) < b;,
and take the addition form of evaluation function.
eval(z) = f(z) + p(=)

The penalty function is constructed with two com-
ponents: (1) relative penalty coefficients for the vi-
olation of constraints and (2) adaptive penalty term
as follows:

m k
o)== (%ﬁ’f’) (Fi = feas)  (18)

max

s. t. i=1,2,---,m



where k is a parameter which is used to adjust the
severity of the penalty function. Ab;(#) is the value

of violation for constraint j. Ab;‘ef is the near-
feasibility threshold for constraint j. How to give a
proper NFTis problem-dependent. f;,,, is the ob-
jective function value of the best feasible solution
vet found and f!; the unpenalized objective func-
tion value of the best overall solution yet found.

Note that the adaptive term (f3}; — ff‘m‘) may
cause this penalty approach two kind of dangers:
(1) zero-penalty and (2) over-penalty. For the case
that f3; = f}.q, even though there exist infeasible
solutions, this approach will give zero-penalty to all
infeasible solutions; for the case that an infeasible
one with very large value f¥; occurred at the early
stage of evolutionary process, this approach will
give over-penalty to all infeasible solutions from
then.

3.7 Yokota, Gen, Ida and Taguchi’s
method

Yokota, Gen, Ida and Taguchi have considered the
same nonlinear programming problem as Smith,
Tate and Coit do and take the multiplication form
of evaluation function [11].

eval(z) = f(=) p(e)

The penalty function is constructed as follows:

p(z)=1- ;Z (Abbj( ))h

max{0, g;(=) — b;}

where Ab;(z) is the value of violation for constraint
j. This penalty function can be viewed as a spe-
cial case of Smith, Tate and Coit’s method that
the near-feasibility threshold (NFT) for constraint

j is set to be as Abnef = b;. So it give a rel-
ative mild penalty than Smlth Tate and Coit’s
method. Note that the penalty function is designed
with non-parameterized approach and is problem-
independent.

(19)

Ab_,-(z) = (20)

3.8 Gen and Cheng’s method

Gen and Cheng further refined their work in order
to give a much severe penalty to infeasible one {12].
Let z be a chromosome in current population P(t),
the penalty function is constructed as follows:

k
p(z)=1- —Z (A:n(:x)

Abj(=) = ma.x{O,gj(z) — b}
AbP** = max{e, Abj(=); z € P()}

(21)
(22)
(23)

where Abj(z*) is the value of violation for con-
straint j for the i-th chromosome, AdP®* is the

maximum of violation for constraint j among cur-
rent population, and ¢ is a small positive number
used to have penalty avoid from zero-division. For
highly constrained optimization problems, the in-
feasible solutions take a relative big portion among
population at each generation. This penalty ap-
proach adjusts the ratio of penalties adaptively at
each generation in order to make a balance between
the preservation of information and the pressure for
infeasibility and avoid over-penalty.

4 Discussion

The previous section surveyed several penalty func-
tions. Each of them has advantages and disad-
vantages. The appropriate choice of the penalty
function may depend on the nature of problem at
hand. Followings are some discussions on the con-
sideration when constructing a penalty function for
a given problem.

Most methods take an addition form of eval-
uation function. In general, the absolute values
of objective function |f(«)| and penalty function
|p(2)| should be in comparable level for average
case. Too small value of |p(z)| will give an under-
penalty for infeasible one and too large value will
give an over-penalty. For many practical prob-
lems, constraints have different units or quantities
in order. In such case, if penalty function on con-
straints is constructed with uniform way, it may
occur that severe penalties give to some constraints
while mild penalties give to remained constraints.
This will cause genetic search approach to ineffec-
tive. This problem received less attention in litera-
ture. There is no such problem for the multiplica-
tion form of evaluation function. Adaptive penalty
approach [10] makes a good attempt to adjust the
amount of penalty according to the state of infeasi-
bility in population. This work need to be further
refined.

Dynamic approach give a consiantly increas-
ing penalty to infeasible solutions along with the
increase of iteration number. The approach may
work well in the case that (1) the optima lies within
the feasible region and (2) the ratio of feasible so-
lution to infeasible solution at each generation may
relatively low. If the optima rides on the border of
infeasible and feasible regions, we may hope that
genetic search approaches to the optima from both
side of feasible and infeasible areas. However, dy-
namic approach tends to give a death penalty to
infeasible one at latter generation. This method
has less attraction for the case.

For the case that optima rides on the border
of infeasible and feasible regions, the technique of
near-feasibility threshold given by Smith, Tate and
Coit [10] seems much attractive. However, how to
give a proper near feasibility threshold for each con-



straints is problem-dependent.

Most penalties techniques belong to the class
of problem-dependent approach. For example, in
Homaifar, Qi and Lai’s method, we need to de-
termine the level of violation of constraints and
choose suitable values of »; for a particular prob-
lem. In Joines and Houck’s method, we need to
determine three parameters properly for a given
problem. In Michalewicz and Attia’s method, we
need to give a starting temperature, freezing tem-
perature, and cooling scheme for a given problem.
The penalty method given by Gen and Cheng be-
longs to problem-independent approach [12].

An ideal penalty amount to an infeasible one
should consider following two factors:

o how far from feasible region
e how close to optima

All existing methods consider only the first factor.
It seems very difficult to embed the second infor-
mation into penalty function because we have no
any priori knowledge about optima. Can we find a
surrogate way 7

It is also worthwhile to make some good test
problems. Most test problems given in literatures
seem simple and small. A typical test problem
may be characterized with following factors: (1)
complex solution space (may not be convex or con-
nected); (2) complex objective functions with mul-
tidodal; (3) the position of optima (lies in feasible
area or rides on border); (4) the size of problem
(number of variables and number of constraints);
and (5) the ratio of feasible to infeasible solutions
(the higher the ratio the much difficult the prob-
lem). It may be interesting to make an extensive
numerical tests with different penalty methods.
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