• Title/Summary/Keyword: penalty method

Search Result 479, Processing Time 0.028 seconds

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

An Improved Analytic Model for Power System Fault Diagnosis and its Optimal Solution Calculation

  • Wang, Shoupeng;Zhao, Dongmei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2018
  • When a fault occurs in a power system, the existing analytic models for the power system fault diagnosis could generate multiple solutions under the condition of one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or an alarm or alarms of these PRs and/or CBs failing. Therefore, this paper presents an improved analytic model addressing the above problem. It takes into account the interaction between the uncertainty involved with PR operation and CB tripping and the uncertainty of the alarm reception, which makes the analytic model more reasonable. In addition, the existing analytic models apply the penalty function method to deal with constraints, which is influenced by the artificial setting of the penalty factor. In order to avoid the penalty factor's effects, this paper transforms constraints into an objective function, and then puts forward an improved immune clonal multi-objective optimization algorithm to solve the optimal solution. Finally, the cases of the power system fault diagnosis are served for demonstrating the feasibility and efficiency of the proposed model and method.

Hierarchically penalized sparse principal component analysis (계층적 벌점함수를 이용한 주성분분석)

  • Kang, Jongkyeong;Park, Jaeshin;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.135-145
    • /
    • 2017
  • Principal component analysis (PCA) describes the variation of multivariate data in terms of a set of uncorrelated variables. Since each principal component is a linear combination of all variables and the loadings are typically non-zero, it is difficult to interpret the derived principal components. Sparse principal component analysis (SPCA) is a specialized technique using the elastic net penalty function to produce sparse loadings in principal component analysis. When data are structured by groups of variables, it is desirable to select variables in a grouped manner. In this paper, we propose a new PCA method to improve variable selection performance when variables are grouped, which not only selects important groups but also removes unimportant variables within identified groups. To incorporate group information into model fitting, we consider a hierarchical lasso penalty instead of the elastic net penalty in SPCA. Real data analyses demonstrate the performance and usefulness of the proposed method.

Pairwise fusion approach to cluster analysis with applications to movie data (영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법)

  • Kim, Hui Jin;Park, Seyoung
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.265-283
    • /
    • 2022
  • MovieLens data consists of recorded movie evaluations that was often used to measure the evaluation score in the recommendation system research field. In this paper, we provide additional information obtained by clustering user-specific genre preference information through movie evaluation data and movie genre data. Because the number of movie ratings per user is very low compared to the total number of movies, the missing rate in this data is very high. For this reason, there are limitations in applying the existing clustering methods. In this paper, we propose a convex clustering-based method using the pairwise fused penalty motivated by the analysis of MovieLens data. In particular, the proposed clustering method execute missing imputation, and at the same time uses movie evaluation and genre weights for each movie to cluster genre preference information possessed by each individual. We compute the proposed optimization using alternating direction method of multipliers algorithm. It is shown that the proposed clustering method is less sensitive to noise and outliers than the existing method through simulation and MovieLens data application.

Gain Tuning of PID Controllers with the Dynamic Encoding Algorithm for Searches(DEAS) Based on the Constrained Optimization Technique

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.13-18
    • /
    • 2003
  • This paper proposes a design method of PID controllers in the framework of a constrained optimization problem. Owing to the popularity for the controller's simplicity and robustness, a great deal of literature concerning PID control design has been published, which can be classified into frequency-based and time-based approaches. However, both approaches have to be considered together for a designed PID control to work well with a guaranteed closed-loop stability. For this purpose, a penalty function is formulated to satisfy both frequency- and time-domain specifications, and is minimized by a recet nonlinear optimization algorithm to attain optimal PID control gains. The proposed method is compared with Wang's and Ho's methods on a suite of example systems. Simulation results show that the PID control tuned by the proposed method improves time-domain performance without deteriorating closed-loop stability.

  • PDF

Rank-constrained LMI Approach to Simultaneous Linear Quadratic Optimal Control Design (계수조건부 LMI를 이용한 동시안정화 LQ 최적제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Kim, Jong-Moon;Kim, Chun-Kyung;Lee, Jong-Moo;Kwon, Soom-Nam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1048-1052
    • /
    • 2007
  • This paper presents a rank-constrained linear matrix inequality(LMI) approach to simultaneous linear-quadratic(LQ) optimal control by static output feedback. Simultaneous LQ optimal control is formulated as an LMI optimization problem with a nonconvex rank condition. An iterative penalty method recently developed is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method, and the results are compared with those of previous work.

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

Optimal Power Flow Study by The Newton's Method (뉴톤법에 의한 최적전력 조류계산)

  • Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.173-178
    • /
    • 1989
  • Optimal Power Flow (OPF) solution by the Newton's method provides a reliable and robust method to classical OPF problems. The major challenge in algorithm development is to identify the binding inequalities efficiently. This paper propose a simple strategy to identify the binding set. From the mechanism of penalty shifting with soft penalty in trial iteration, a active binding sit is identified automatically. This paper also suggests a technique to solve the linear system whore coefficients are presented by the matrix. This implementation is highly efficient for sparsity programming. Case study for 3,5,14,118,190 bus and practrical KEPCO 305 bus system are performed as well.

  • PDF

Reduced-order controller design via an iterative LMI method (반복 선형행렬부등식을 이용한 축소차수 제어기 설계)

  • Kim, Seog-Joo;Kwon, Soon-Man;Lee, Jong-Moo;Kim, Chun-Kyung;Cheon, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

Preconditioned Conjugate Gradient Method for Super Resolution Image Reconstruction (초고해상도 영상 복원을 위한 Preconditioned Conjugate Gradient 최적화 기법)

  • Lee Eun-Sung;Kim Jeong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.786-794
    • /
    • 2006
  • We proposed a novel preconditioner based PCG(Preconditioned Conjugate Gradient) method for super resolution image reconstruction. Compared with the conventional block circulant type preconditioner, the proposed preconditioner can be more effectively applied for objective functions that include roughness penalty functions. The effectiveness of the proposed method was shown by simulations and experiments.