• Title/Summary/Keyword: penalty function method

Search Result 180, Processing Time 0.02 seconds

An Adaptive Input Data Space Parting Solution to the Synthesis of N euro- Fuzzy Models

  • Nguyen, Sy Dzung;Ngo, Kieu Nhi
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.928-938
    • /
    • 2008
  • This study presents an approach for approximation an unknown function from a numerical data set based on the synthesis of a neuro-fuzzy model. An adaptive input data space parting method, which is used for building hyperbox-shaped clusters in the input data space, is proposed. Each data cluster is implemented here as a fuzzy set using a membership function MF with a hyperbox core that is constructed from a min vertex and a max vertex. The focus of interest in proposed approach is to increase degree of fit between characteristics of the given numerical data set and the established fuzzy sets used to approximate it. A new cutting procedure, named NCP, is proposed. The NCP is an adaptive cutting procedure using a pure function $\Psi$ and a penalty function $\tau$ for direction the input data space parting process. New algorithms named CSHL, HLM1 and HLM2 are presented. The first new algorithm, CSHL, built based on the cutting procedure NCP, is used to create hyperbox-shaped data clusters. The second and the third algorithm are used to establish adaptive neuro- fuzzy inference systems. A series of numerical experiments are performed to assess the efficiency of the proposed approach.

The solar cell modeling using Lambert W-function (Lambert W 함수를 이용한 태양전지 모델링)

  • Bae, Jong-Guk;Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF

Filtering Technique to Control Member Size in Topology Design Optimization

  • Kim, Tae-Soo;Kim, Jae-Eun;Jeong, Je-Hyun;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.253-261
    • /
    • 2004
  • A simple and effective filtering method to control the member size of an optimized structure is proposed for topology optimization. In the present approach, the original objective sensitivities are replaced with their relative values evaluated within a filtering area. By adjusting the size of the filtering area, the member size of an optimized structure or the level of its topological complexity can be controlled even within a given finite element mesh. In contrast to the checkerboard-free filter, the present filter focuses on high-frequency components of the sensitivities. Since the present filtering method does not add a penalty term to the objective function nor require additional constraints, it is not only efficient but also simple to implement. Mean compliance minimization and eigenfrequency maximization problems are considered to verify the effectiveness of the present approach.

Streamline Upwind FE Analysis for Incompressible Viscous Flow Problem (비압축성 점성유체에 관한 유선상류화 유한요소 해석)

  • 최창근;유원진;김윤석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.54-61
    • /
    • 1996
  • This paper deals with finite element analysis for incompressible viscous flow problem By formulating the governing equation based on the streamline upwind concept , the wiggle phenomenon of fluid flow is minimized in spite of a few number of finite element used. The penalty function method which can reduce the number of independent variables is adopted for the purpose of computational efficiency and the selected reduced integral is carried out for the convection and pressure terms to reserve the stability of solution. In time-history analysis of fluid flow, the accuracy and reliability of an obtained solution are established by using the predictor-corrector method. Finally, correlation studies between analytical and experimental results are conducted wi th the object ive to establish the validity of the proposed numerical approach.

  • PDF

A Study on the Economics of Container Ships at Preliminary Design Stage (초기설계단계(初期設計段階)에서의 콘테이너선(船)의 경제성(經濟性)에 관한 연구(硏究))

  • Dong-Kon,Lee;S.I.,Ma
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 1984
  • This paper is concerned with an optimum design study of containerships in preliminary stage by applying economic criteria. The Net Present Value Index (NPVI) and the Required Freight Rate(RFR) are used as measures of merit. Hooke & Jeeves direct search method and External Penalty Function method of Sequential Unconstrained Minimization Techniques(SUMT) are used for solving constrained nonlinear optimization problem. Sensitivity analysis is carried out to investigate the effect on the optimum solution due to change of values in some parameters such as crane capacity, load factor, oil price, ship speed and the ratio between loaded FEU and TEU.

  • PDF

A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads (신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.

A novel sensitivity method to structural damage estimation in bridges with moving mass

  • Mirzaee, Akbar;Shayanfar, Mohsenali;Abbasnia, Reza
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1217-1244
    • /
    • 2015
  • In this research a theoretical and numerical study on a bridge damage detection procedure is presented based on vibration measurements collected from a set of accelerometers. This method, referred to as "Adjoint Variable Method", is a sensitivity-based finite element model updating method. The approach relies on minimizing a penalty function, which usually consists of the errors between the measured quantities and the corresponding predictions attained from the model. Moving mass is an interactive model and includes inertia effects between the model and mass. This interactive model is a time varying system and the proposed method is capable of detecting damage in this variable system. Robustness of the proposed method is illustrated by correct detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparative study on common sensitivity and the proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. In addition various possible sources of error, including the effects of measurement noise and initial assumption error in stability of method are also discussed.

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

Fuzzy Model Identification using a mGA Hybrid Schemes (mGA의 혼합된 구조를 사용한 퍼지 모델 동정)

  • Ju, Yeong-Hun;Lee, Yeon-U;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.423-431
    • /
    • 2000
  • This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

  • PDF