• Title/Summary/Keyword: peel test

Search Result 237, Processing Time 0.031 seconds

Studies on Adhesion Properties of Grafted EPDM Containing Carboxylic Acid Group (카르복시산을 포함하는 Grafted EPDM의 접착특성에 관한 연구)

  • Kim, Dongho;Yoon, Yoomi;Chung, Ildoo;Park, Chanyoung;Bae, Jongwoo;Oh, Sangtaek;Kim, Guni
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The effect of the grafting ratio on the mechanical property and adhesion property of the grafted EPDM modified with methacrylic acid (MA) was investigated. The storage modulus of MA-grafted EPDM was maintained higher than that of cross-linked EPDM vulcanizate by sulfur, but it was observed that the storage modulus was decreased at elevated temperature because of the weakened secondary bonding. When the functional group for hydrogen bonding was introduced in EPDM, it had excellent mechanical properties by the aggregate between grafted EPDM molecules and crystallinity of MA. The bonding strength between EPDM and other rubbers was very low because EPDM has nonpolar property and low molecular interaction to others. The bonding strength was increased as increasing grafting ratio and it was excellent enough to break the rubber during the peel test when the grafting ratio was more than 10%.

The Evaluation of the Preservative Treated Plywood Produced by Factory Processing (야외사용을 목적으로 공장라인에서 생산한 방부합판의 성능평가)

  • Son, Dong Won;Lee, Sang-Min;Lee, Dong-heub;Kang, Eun-Chang;Park, Byung Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.47-54
    • /
    • 2008
  • To make up original defects of the wooden materials for decks, and to supply the wooden material for outdoor, we fabricated preservative treated plywood(PTP). Copper azole (CUAZ-1) preservative was treated with a normal full-cell process. Bond Strength of PTP was not affected after the preservative treatment. The anti-fungal efficiency and dimensional stability were obtained from PTP. A little discoloration of the surface was detected, but the dimensional change or peel bonded area off were not observed after accelerated weathering test. Although some strength of PTP was reduced after 17 months of field exposure, the PTP should be applicable for outdoor applications.

Effect of Multilayer Edible Coatings on the Lemon Quality Changes during the Storage (Multilayer 식용코팅의 레몬 저장성에 대한 효과)

  • Choi, Jin Wook;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • Multilayer edible coatings was applied to lemon with beeswax-hydroxypropyl methylcellulose (BW-HPMC), soybean oil-carboxymethyl cellulose (SBO-CMC), and carnaubawax-shellac-locust bean gum (CW-SL-LBG), respectively. The multilayer was composed of two layers of the same material, but the outer layer only contained vitamins C and E as antioxidants. Coating amounts built on lemon peel were measured to be large in the order of CW-SLLBG> BW-HPMC> SBO-CMC. The coated lemons were stored at 30${^{\circ}C}$ for 12 days. CW-SL-LBG showed the least change during the storage in weight loss, rotten rate, firmness, and browning. Whereas SBO-CMC had the least change in pH, soluble solid amount, and titratable acidity. In a sensory test, CW-SL-LBG was evaluated to be the best in the attributes such as spoilage, glossiness, color, firmness, and flavor. Overall CW-SL-LBG was judged to be the best for multilayerd coating with vitamin C and E on lemon.

Potential use of dried persimmon (Diospyros kaki) byproducts as feed sources for ruminants

  • Sang Moo Lee;Tabita Dameria Marbun;Eun Joong Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.749-762
    • /
    • 2024
  • The aim of this study was to evaluate the chemical composition, in vitro digestibility, and palatability of dried persimmon byproducts (persimmon peel [PP] and damaged whole persimmons [WP]) ensiled with rice straw in different mixing ratios. PP and WP were ensiled with rice straw at ratios of 3:7 (PP3R7, WP3R7), 5:5 (PP5R5, WP5R5), 7:3 (PP7R3, WP7R3), and 8:2 (PP8R2, WP8R2) for 70 d. WP3R7 had the highest (p < 0.05) crude protein and lactate contents compared to the other combinations. On the other hand, PP3R7 and PP8R2 had lower concentrations of neutral and acid-detergent fibers (p < 0.05) and produced lower amounts of ammonia-N (p < 0.05). The silages were compared to rice straw silage (RS), maize silage (MS), whole-crop rye silage (WCRS), and sorghum-sudangrass silage (SSGS) during an in vitro study. The results showed that PP8R2 and WP7R3 had higher (p < 0.05) dry matter digestibility values than RS, MS, WCRS, and SSGS in a 6 h incubation period. In addition, a palatability test of the silages was conducted on Hanwoo cattle, goats, and deer, using the cafeteria method. The palatability index rate of PP7R3 was the highest (p < 0.05) for the goats and the Hanwoo cattle, whereas PP8R2 had the highest (p < 0.05) rate for the deer and the Hanwoo cattle. In conclusion, dried persimmon byproducts in the form of PP and WPs can be used as ruminant feed when ensiled with RS at ratios of 7:3 and 8:2.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

Study of adhesion properties of flexible copper clad laminate having various thickness of Cr seed layer under constant temperature and humidity condition (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Kim, Yong-Il;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.80-80
    • /
    • 2010
  • 전자제품의 소형화, 경량화, 고집적화가 심화됨에 따라 전자제품을 구성하는 회로의 미세화 또한 요구되고 있다. 이러한 요구는 경성회로기판 (rigid printed circuit board, RPCB) 뿐만 아니라 연성회로기판 (flexible printed circuit board, FPCB) 에도 적용되고 있으며 이에 대한 많은 연구 또한 이루어지고 있다. 연성회로기판은 일반적으로 절연층을 이루는 폴리이미드 (polyimide, PI)와 전도층을 이루는 구리로 이루어져 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 우수한 기계적 특성, 연속공정이 가능한 장점을 가지고 있으나, 고온다습한 환경하에서 높은 흡습성으로 인해 전도층을 이루는 구리와의 접합특성이 저하되는 단점 또한 가지고 있다. 또한 전도층을 이루는 구리는 고온다습한 환경하에서 산화 발생이 용이하기 때문에 접합특성의 감소를 야기할 수 있다. 따라서 본 연구에서는 고온다습한 조건하에서 sputtering and plating 공정을 통해 순수 Cr seed layer를 가지는 연성회로기판의 seed layer의 두께와 시효시간의 변화로 인해 발생하는 접합특성의 변화를 관찰하고 분석하였다. 본 연구에서는 두께 $25{\mu}m$의 일본 Kadena사(社)에서 제작된 폴리이미드 상에 sputtering 공정을 통해 순수 Cr으로 이루어진 각각 두께 100, 200, $300{\AA}$의 seed layer를 형성한 후 전해도금법을 이용, 두께 $8{\mu}m$의 구리 전도층을 형성한 시료를 사용하였다. 제작된 시료는 고온다습한 환경하에서의 접합 특성의 변화를 관찰하기 위하여 $85^{\circ}C$/85%RH 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효처리 한 후, Interconnections Packaging Circuitry (IPC) 규격에 의거하여 접합강도를 측정하였다. 시료의 전도층은 폭 3.2mm 길이 230mm의 패턴을 가지도록, 절연층은 폭 10mm, 길이 230mm으로 구성되었으며 이를 50.8mm/min의 박리 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 파면의 형상과 화학적 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 관찰 분석하였다.

  • PDF

A survey on pesticide residues of imported fruits circulated in Gyeonggido (경기도내 유통 수입과실류의 잔류농약 실태조사)

  • Cho, Yun-Sik;Kang, Jeong-Bok;Kim, Yang-Hee;Jeong, Jin-A;Huh, Jeong-Weon;Lee, So-Hyun;Lim, Young-Sik;Bae, Ho-Jeong;Kang, Heung-Gyu;Lee, Jeong-Hee;Jung, Eun-Sook;Lee, Byoung-Hoon;Park, Yong-Bok;Lee, Jong-Bok
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.195-201
    • /
    • 2012
  • We tested for pesticide residues in 124 samples of 22 different items of imported fruits circulated in Gyeonggido. Total 218 pesticides were analyzed by multi-residue method using gas chromatography/nitrogen phosphorus detector-electron capture detector (GC/NPD-ECD), time of flight/mass spectrometer (TOF/MS), ultra performance liquid chromatography/photo diode array (UPLC/PDA), high performance liquid chromatography/fluorescence detector (HPLC/FLD) and mass spectrometer (LC/MS/MS). The pesticides were detected in 18 fruits samples, ranging 0.003~0.3 mg/kg and no samples had violative residue. The separation test to 14 sample pesticides detected was conducted to monitor the current status of pesticide residues according to the partial characteristic. The pesticides were detected in 14 peels ranging 0.03~1.5 mg/kg and 2 fleshes in less than detection limits. These results indicate that imported fruits are safe when the human takes normally but even the small amount of pesticides is harmful when the human takes it in a prolonged period. Therefore, the pesticide residual amounts of imported friuts should be constantly monitored for food safety.

Adhesion reliability of flexible copper clad laminate under constant temperature and humidity condition by thickness of Ni/Cr seed layer (항온항습 조건하에서 Ni/Cr 층의 두께에 따른 FCCL의 접합 신뢰성 평가)

  • Choi, Jung-Hyun;Noh, Bo-In;Yoon, Jeong-Won;Yoon, Jae-Hyun;Choi, Don-Hyun;Kim, Yong-Il;Jung, Seong-Boo
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.75-75
    • /
    • 2009
  • 연성회로기판은 일반적으로 절연체를 이루는 폴리이미드와 전도체를 이루는 구리로 구성되어 있다. 폴리이미드는 뛰어난 열적 화학적 안정성, 기계적 특성, 공정성 등의 장점으로 인해 연성회로기판의 절연체로서 제안되었지만 전도체를 이루는 구리와의 접합 특성이 우수하지 않기 때문에 많은 연구가 현재까지 진행되고 있고, 그 결과 연성회로기판의 접합 특성에 많은 개선이 이루어짐과 동시에 다양한 공정 방법이 제안되고 있다. 하지만 고온다습한 환경에서 사용될 경우 폴리이미드의 높은 흡습성과, 구리와 seed layer의 산화 문제로 인해 접합 특성이 저하된다는 단점 또한 가지고 있다. 따라서 본 연구를 통해 고온다습한 조건하에서 seed layer가 80Ni/20Cr 합금으로 구성된 연성회로기판의 seed layer의 두께와 시효시간으로 인해 발생하는 접합 신뢰성의 차이를 관찰하였다. 본 연구에서는 두께 $25{\mu}m$의 폴리이미드 위에 각각 100, 200, $300{\AA}$ 두께의 80Ni/20Cr의 합금 조성을 가지는 seed layer를 스퍼터링 공정을 통해 형성한 후 전해도금법을 이용하여 $8{\mu}m$ 두께의 구리 전도층을 형성하였다. 접합 특성 평가를 위해 ICP 규격에 따라 전도층 패턴을 폭 3.2mm, 길이 230mm로 시편을 제작하여 50.8mm/min의 이송 속도로 각 시편당 8회의 $90^{\circ}$ peel test를 실시하였다. 또한 $85^{\circ}C$/85% 항온항습 조건하에서 각각 24, 72, 120, 168시간 동안 시효 처리 후 같은 방법으로 연성회로기판의 접합 특성을 평가하였다. 파면의 형상과 조성을 분석하기 위해 SEM (Scanning electron microscope)과 EDS (Energy-dispersive X-ray spectroscopy)를 사용하였으며, 파면의 조도 측정을 위해 AFM (Atomic force microscope)을 사용하였다. 또한 파면의 잔여물 분석을 위해 EPMA (Energy probe microanalysis)를 사용하였고 계면의 화학적 결합상태를 분석하기 위해 XPS (X-ray photoelectron spectroscopy)를 통해 파면을 분석하였다.

  • PDF

Delamination Limit of Aluminum Foil-Laminated Sheet During Stretch Forming (등이축인장 모드 변형시 알루미늄 포일 접착강판의 박리한계 예측)

  • Lee, Chan-Joo;Son, Young-Ki;Lee, Jung-Min;Lee, Seon-Bong;Byun, Sang-Deog;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.413-420
    • /
    • 2012
  • An aluminum foil-laminated sheet is a laminated steel sheet on which aluminum foil is adhesively bonded. It is usually used on the outer panel of home appliances to provide an aluminum feeling and appearance on the surface of the product. The delamination of aluminum foil is one of the main problems during the stretch forming process. The purpose of this study is was to determine the delamination limit of an aluminum foil-laminated sheet in the stretch forming process. The delamination was dependent on the bonding strength between aluminum foil and steel sheet. The fracture behavior of the interface between the aluminum foil and the steel sheet was described by a cohesive zone model. A finite element was conducted with the cohesive zone model to analyze the relationship between the delamination limit and the bonding strength of the interface. The interface bonding strength was evaluated by lap shear and T-peel test. The delamination limit of the aluminum foil-laminated sheet was determined by using the bonding strength of the steel sheet. The delamination limit was also verified by the Erichsen test.