• Title/Summary/Keyword: pedigree

Search Result 283, Processing Time 0.042 seconds

Population structure analysis of Yeonsan Ogye using microsatellite markers

  • Cho, Sung Hyun;Lee, Seung-Sook;Manjula, Prabuddha;Kim, Minjun;Lee, Seung Hwan;Lee, Jun Heon;Seo, Dongwon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.790-800
    • /
    • 2020
  • The Yeonsan Ogye (YO) chicken is a natural heritage of Korea, characterized by black feathers, skin, bones, eyes, and comb. The purebred of YO population has been reared under the natural mating system with no systematic selection and breeding plan. The purpose of this study was to identify the genetic diversity and find the optimal number of population sub-division using 12 polymorphic microsatellite (MS) markers to construct a pedigree-based breeding plan for the YO population. A total of 509 YO birds were used for this study. Genetic diversity and population structure analysis were conducted based on the MS marker genotype information. The overall average polymorphic information content value and expected heterozygosity of the population were 0.586, and 0.642, respectively. The K-mean cluster analysis based on the genetic distance result confirmed that the current YO population can be divided into three ancestry groups. Individuals in each group were evaluated based on their genetic distance to identify the potential candidates for a future breeding plan. This study concludes that a future breeding plan with known pedigree information of selected founder animals, which holds high genetic diversity, could be the best strategy to ensure the conservation of the Korean YO chicken population.

National genomic evaluation of Korean thoroughbreds through indirect racing phenotype

  • Lee, Jinwoo;Shin, Donghyun;Kim, Heebal
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.659-669
    • /
    • 2022
  • Objective: Thoroughbred horses have been bred exclusively for racing in England for a long time. Additionally, because horse racing is a global sport, a healthy leisure activity for ordinary citizens, and a high-value business, systematic racehorse breeding at the population level is a requirement for continuous industrial development. Therefore, we established genomic evaluation system (using prize money as horse racing traits) to produce spirited, agile, and strong racing horse population Methods: We used phenotypic data from 25,061 Thoroughbred horses (all registered individuals in Korea) that competed in races between 1994 and 2019 at the Korea Racing Authority and constructed pedigree structures. We quantified the improvement in racehorse breeding output by year in Korea, and this aided in the establishment of a high-level horse-fill industry. Results: We found that pedigree-based best linear unbiased prediction method improved the racing performance of the Thoroughbred population with high accuracy, making it possible to construct an excellent Thoroughbred racehorse population in Korea. Conclusion: This study could be used to develop an efficient breeding program at the population level for Korean Thoroughbred racehorse populations as well as others.

Evaluation of Control Pollination Efficiency and Management Status in Control Pollinated Progeny Populations of Pinus densiflora using Pedigree Analysis based on Microsatellite Markers (소나무 인공교배 차대집단에서 Microsatellite marker 혈통분석을 이용한 인공교배 효율 및 관리상태 평가)

  • Tae-Lim Yeo;Jihun Kim;Dayoung Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.157-172
    • /
    • 2023
  • Controlled pollination (CP) is an important method in tree breeding programs because CP quickly generates desirable genotypes and rapidly maximizes genetic gains. However, few studies have evaluated the efficiency and success rate of CP in the breeding program of Pinus densiflora. To evaluate CP and the management of control pollinated progenies, we used 159 individuals in CB2 × KW40 or KW40 × CB2 populations that were established in 2015. After genotyping microsatellite loci, we estimated whether the number of primers was sufficient or not. Then, we performed pedigree analysis. The result showed that the number of primers was sufficient. By pedigree analysis, we found out that 60 of 159 individuals had been generated by the mating between CB2 and KW40. In the maternity analysis, there was evidence to indicate the possibility of management problems. Therefore, we excluded 54 individuals and repeated the pedigree analysis. In the second analysis, 47 of 105 individuals were generated by the mating between CB2 and KW40. To increase the efficiency of CP in tree breeding programs, several precautions are required. It is necessary to identify the exact clone names of the mother and father trees. In addition, CP processes should be performed properly, including deciding on the schedule of CP and the isolation of female strobili or flowers. Finally, the monitoring of hybrid progenies management after mating is important. Molecular markers should be used to identify the clone names of the mother and father trees and for monitoring post hoc management. This study provides a reference for tree breeding programs for the future control pollination of pine species.

Prediction of Genomic Relationship Matrices using Single Nucleotide Polymorphisms in Hanwoo (한우의 유전체 표지인자 활용 개체 혈연관계 추정)

  • Lee, Deuk-Hwan;Cho, Chung-Il;Kim, Nae-Soo
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.357-366
    • /
    • 2010
  • The emergence of next-generation sequencing technologies has lead to application of new computational and statistical methodologies that allow incorporating genetic information from entire genomes of many individuals composing the population. For example, using single-nucleotide polymorphisms (SNP) obtained from whole genome amplification platforms such as the Ilummina BovineSNP50 chip, many researchers are actively engaged in the genetic evaluation of cattle livestock using whole genome relationship analyses. In this study, we estimated the genomic relationship matrix (GRM) and compared it with one computed using a pedigree relationship matrix (PRM) using a population of Hanwoo. This project is a preliminary study that will eventually include future work on genomic selection and prediction. Data used in this study were obtained from 187 blood samples consisting of the progeny of 20 young bulls collected after parentage testing from the Hanwoo improvement center, National Agriculture Cooperative Federation as well as 103 blood samples from the progeny of 12 proven bulls collected from farms around the Kyong-buk area in South Korea. The data set was divided into two cases for analysis. In the first case missing genotypes were included. In the second case missing genotypes were excluded. The effect of missing genotypes on the accuracy of genomic relationship estimation was investigated. Estimation of relationships using genomic information was also carried out chromosome by chromosome for whole genomic SNP markers based on the regression method using allele frequencies across loci. The average correlation coefficient and standard deviation between relationships using pedigree information and chromosomal genomic information using data which was verified using a parentage test andeliminated missing genotypes was $0.81{\pm}0.04$ and their correlation coefficient when using whole genomic information was 0.98, which was higher. Variation in relationships between non-inbred half sibs was $0.22{\pm}0.17$ on chromosomal and $0.22{\pm}0.04$ on whole genomic SNP markers. The variations were larger and unusual values were observed when non-parentage test data were included. So, relationship matrix by genomic information can be useful for genetic evaluation of animal breeding.

Application of single-step genomic evaluation using social genetic effect model for growth in pig

  • Hong, Joon Ki;Kim, Young Sin;Cho, Kyu Ho;Lee, Deuk Hwan;Min, Ye Jin;Cho, Eun Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1836-1843
    • /
    • 2019
  • Objective: Social genetic effects (SGE) are an important genetic component for growth, group productivity, and welfare in pigs. The present study was conducted to evaluate i) the feasibility of the single-step genomic best linear unbiased prediction (ssGBLUP) approach with the inclusion of SGE in the model in pigs, and ii) the changes in the contribution of heritable SGE to the phenotypic variance with different scaling ${\omega}$ constants for genomic relationships. Methods: The dataset included performance tested growth rate records (average daily gain) from 13,166 and 21,762 pigs Landrace (LR) and Yorkshire (YS), respectively. A total of 1,041 (LR) and 964 (YS) pigs were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel. With the BLUPF90 software package, genetic parameters were estimated using a modified animal model for competitive traits. Giving a fixed weight to pedigree relationships (${\tau}:1$), several weights (${\omega}_{xx}$, 0.1 to 1.0; with a 0.1 interval) were scaled with the genomic relationship for best model fit with Akaike information criterion (AIC). Results: The genetic variances and total heritability estimates ($T^2$) were mostly higher with ssGBLUP than in the pedigree-based analysis. The model AIC value increased with any level of ${\omega}$ other than 0.6 and 0.5 in LR and YS, respectively, indicating the worse fit of those models. The theoretical accuracies of direct and social breeding value were increased by decreasing ${\omega}$ in both breeds, indicating the better accuracy of ${\omega}_{0.1}$ models. Therefore, the optimal values of ${\omega}$ to minimize AIC and to increase theoretical accuracy were 0.6 in LR and 0.5 in YS. Conclusion: In conclusion, single-step ssGBLUP model fitting SGE showed significant improvement in accuracy compared with the pedigree-based analysis method; therefore, it could be implemented in a pig population for genomic selection based on SGE, especially in South Korean populations, with appropriate further adjustment of tuning parameters for relationship matrices.

Genetic diversity evolution in the Mexican Charolais cattle population

  • Rios-Utrera, Angel;Montano-Bermudez, Moises;Vega-Murillo, Vicente Eliezer;Martinez-Velazquez, Guillermo;Baeza-Rodriguez, Juan Jose;Roman-Ponce, Sergio Ivan
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1116-1122
    • /
    • 2021
  • Objective: The aim was to characterize the genetic diversity evolution of the registered Mexican Charolais cattle population by pedigree analysis. Methods: Data consisted of 331,390 pedigree records of animals born from 1934 to 2018. Average complete generation equivalent, generation interval, effective population size (Ne), and effective numbers of founders (fe), ancestors (fa), and founder genomes (Ng) were calculated for seven five-year periods. The inbreeding coefficient was calculated per year of birth, from 1984 to 2018, whereas the gene contribution of the most influential ancestors was calculated for the latter period. Results: Average complete generation equivalent consistently increased across periods, from 4.76, for the first period (1984 through 1988), to 7.86, for the last period (2014 through 2018). The inbreeding coefficient showed a relative steadiness across the last seventeen years, oscillating from 0.0110 to 0.0145. During the last period, the average generation interval for the father-offspring pathways was nearly 1 yr. longer than that of the mother-offspring pathways. The effective population size increased steadily since 1984 (105.0) and until 2013 (237.1), but showed a minor decline from 2013 to 2018 (233.2). The population displayed an increase in the fa since 1984 and until 2008; however, showed a small decrease during the last decade. The effective number of founder genomes increased from 1984 to 2003, but revealed loss of genetic variability during the last fifteen years (from 136.4 to 127.7). The fa:fe ratio suggests that the genetic diversity loss was partially caused by formation of genetic bottlenecks in the pedigree; in addition, the Ng:fa ratio indicates loss of founder alleles due to genetic drift. The most influential ancestor explained 1.8% of the total genetic variability in the progeny born from 2014 to 2018. Conclusion: Inbreeding, Ne, fa, and Ng are rather beyond critical levels; therefore, the current genetic status of the population is not at risk.

A Program for Efficient Phasing of Three-Generation Trio SNP Genotype Data

  • Song, Sang-Hoon;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.138-141
    • /
    • 2011
  • Here, we report a computer program written in Python, which phases SNP genotypes and infers inherited deletions based on the pattern of Mendelian inheritance within a trio pedigree. When tiered trio genotypes that encompass three generations are available, it narrows a recombination event down to a region between two consecutive heterozygous markers. In addition, the phase information that is inferred from the upper trio that is formed by one of the parents and grandparents can be propagated to phase the genotypes of the lower trio that is formed by the parents and an offspring.

Breeding Process and Agronomic Traits for New Burley Tobacco Variety, KB 301 (버어리종 고 DVT 계통 KB 301의 육성경과 및 농경적 특성)

  • 조천준;정석훈;배성국;최상주;김도연
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.2
    • /
    • pp.130-132
    • /
    • 2002
  • The new burley tobacco variety, KB 301, was developed by the cross combination ’(Ky 17 x TI 1068)F$_4$ x TC 613’. The modified pedigree breeding method was used in the selection procedures. The agronomic traits and chemical constituents of KB 301 were very similar to those of Burley 21. But KB 301 had significantly higher content of total DVT than Burley 21. KB 301 was also resistant to black shank, TMV and PVY.