• Title/Summary/Keyword: pedestrian detection

Search Result 187, Processing Time 0.027 seconds

Design of High-performance Pedestrian and Vehicle Detection Circuit using Haar-like Features (Haar-like 특징을 이용한 고성능 보행자 및 차량 인식 회로 설계)

  • Kim, Soo-Jin;Park, Sang-Kyun;Lee, Seon-Young;Cho, Kyeong-Soon
    • The KIPS Transactions:PartA
    • /
    • v.19A no.4
    • /
    • pp.175-180
    • /
    • 2012
  • This paper describes the design of high-performance pedestrian and vehicle detection circuit using the Haar-like features. The proposed circuit uses a sliding window for every image frame in order to extract Haar-like features and to detect pedestrians and vehicles. A total of 200 Haar-like features per sliding window is extracted from Haar-like feature extraction circuit and the extracted features are provided to AdaBoost classifier circuit. In order to increase the processing speed, the proposed circuit adopts the parallel architecture and it can process two sliding windows at the same time. We described the proposed high-performance pedestrian and vehicle detection circuit using Verilog HDL and synthesized the gate-level circuit using the 130nm standard cell library. The synthesized circuit consists of 1,388,260 gates and its maximum operating frequency is 203MHz. Since the proposed circuit processes about 47.8 $640{\times}480$ image frames per second, it can be used to provide the real-time detection of pedestrians and vehicles.

Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier (HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현)

  • Kim, Jin-Yul;Park, Chan-Jun;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Multiple Pedestrians Detection and Tracking using Histogram and Color Information from a Moving Camera (이동 카메라 영상에서 히스토그램과 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • 임종석;곽현욱;김욱현
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.193-202
    • /
    • 2004
  • This paper presents a novel histogram and color information based algorithm for detecting and tracking multiple pedestrians from a moving camera. In the proposed method, RGB color histogram is used to detect adjacent pedestrians and RGB mean value is used to track detected pedestrians. Therefore, our algorithm detect contiguous or a few occluded pedestrians and track in case pedestrian's shape change. The experimental results on our test sequences demonstrate the high efficiency of our method.

A Two-Stage Approach to Pedestrian Detection with a Moving Camera

  • Kim, Miae;Kim, Chang-Su
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • This paper presents a two-stage approach to detect pedestrians in video sequences taken from a moving vehicle. The first stage is a preprocessing step, in which potential pedestrians are hypothesized. During the preprocessing step, a difference image is constructed using a global motion estimation, vertical and horizontal edge maps are extracted, and the color difference between the road and pedestrians are determined to create candidate regions where pedestrians may be present. The candidate regions are refined further using the vertical edge symmetry features of the pedestrians' legs. In the next stage, each hypothesis is verified using the integral channel features and an AdaBoost classifier. In this stage, a decision is made as to whether or not each candidate region contains a pedestrian. The proposed algorithm was tested on a range of dataset images and showed good performance.

  • PDF

Adaptive Sensor/Heterogeneous Infrastructure Integrated Pedestrian Navigation Technology using Rényi Divergence-based Outlier Detection (Rényi Divergence 기반 이상치 검출을 통한 적응형 센서/이종 인프라 통합 보행자 항법 기술)

  • Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.289-299
    • /
    • 2024
  • In the Pedestrian Dead Reckoning (PDR)/Global Positioning System (GPS)/Wi-Fi-integrated navigation system for indoor/outdoor continuous positioning of pedestrians, the process of detecting outliers in measurements is very important. When accurate location information from measurements is used, reliable correction data can be generated during the fusion filtering process. However, abnormal measurements may occur in certain situations, such as indoor/outdoor transitions, which can degrade filter performance and lead to significant errors in the estimated position. To address this issue, this paper proposes a method for detecting outliers in measurements based on Rényi Divergence (RD). When the deviation of the RD value is large, the measurements are considered outliers, and positioning is performed using only pure PDR. Based on experiments conducted with real data, it was confirmed that outliers were effectively detected for abnormal measurements, leading to an improvement in the performance of pedestrian navigation.

Pedestrian Safety Road Marking Detection Using LRF Range and Reflectivity (LRF (Laser Range Finder) 거리와 반사도를 이용한 보행자 보호용 노면표시 검출기법 연구)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Yoo, Seung-Hwan;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • In this paper, a detection method of a pedestrian safety road marking was proposed. The proposed algorithm uses laser range and reflectivity of a range finder (LRF). For a detection of crosswalk marking and stop line, the DFT (Discrete Fourier Transform) of reflectivity and cross-correlation method between the reference replica and the measured reflectivity are used. A speed bump is detected through measuring an altitude difference of two LRFs which have the different tilted angle. Furthermore, we proposed a velocity constrained a detection method of a speed bump. Finally, the proposed methods are tested in on-line, on the pavement of a road. The considered road markings are wholly detected. The localization errors of both road markings are smaller than 0.4 meter.

Pedestrian identification in infrared images using visual saliency detection technique

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.615-618
    • /
    • 2019
  • Visual saliency detection is an important part in various vision-based applications. There are a myriad of techniques for saliency detection in color images. However, the number of methods for saliency detection in infrared images is inadequate. In this paper, we introduce a simple approach for pedestrian identification in infrared images using saliency. The input image is thresholded into several Boolean maps, an initial saliency map is then calculated as a weighted sum of created Boolean maps. The initial map is further refined by using thresholding, morphology operation, and Gaussian filter to produce the final, high-quality saliency map. The experiment showed that the proposed method produced high performance results when applied to real-life data.

A Real-time Pedestrian Detection based on AGMM and HOG for Embedded Surveillance

  • Nguyen, Thanh Binh;Nguyen, Van Tuan;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1289-1301
    • /
    • 2015
  • Pedestrian detection (PD) is an essential task in various applications and sliding window-based methods utilizing HOG (Histogram of Oriented Gradients) or HOG-like descriptors have been shown to be very effective for accurate PD. However, due to exhaustive search across images, PD methods based on sliding window usually require heavy computational time. In this paper, we propose a real-time PD method for embedded visual surveillance with fixed backgrounds. The proposed PD method employs HOG descriptors as many PD methods does, but utilizes selective search so that it can save processing time significantly. The proposed selective search is guided by restricting searching to candidate regions extracted from Adaptive Gaussian Mixture Model (AGMM)-based background subtraction technique. Moreover, approximate computation of HOG descriptor and implementation in fixed-point arithmetic mode contributes to reduction of processing time further. Possible accuracy degradation due to approximate computation is compensated by applying an appropriate one among three offline trained SVM classifiers according to sizes of candidate regions. The experimental results show that the proposed PD method significantly improves processing speed without noticeable accuracy degradation compared to the original HOG-based PD and HOG with cascade SVM so that it is a suitable real-time PD implementation for embedded surveillance systems.