• Title/Summary/Keyword: peak wall stress

Search Result 38, Processing Time 0.02 seconds

Alterations in Left ventricular End-systolic Wall Stress During Short-term Follow-up After Correction of Isolated Congenital Aortic Stenosis (선천성 대동맥 협착증의 술전 및 술후 단기간의 수축말기 좌심실 내벽 스트레스의 변화)

  • 김시호
    • Journal of Chest Surgery
    • /
    • v.33 no.10
    • /
    • pp.777-784
    • /
    • 2000
  • Congenital aortic stenosis in children is characterized by "excessive" left ventricular hypertrophy with reduced left ventricular systolic wall stress that allows for supernormal ejection performance. We hypothesized that left ventricular wall stress was decreased immediately after surgical correction of pure congenital aortic stenosis. Also measuring postoperative left ventricular wall stress was a useful noninvasive measurement that allowed direct assessment for oxygen consumption of myocardium than measuring the peak systolic pressure gradient between ascending aorta and left ventricle for the assessment of surgical results. Material and Method: Between September 1993 and August 1999, 8 patients with isolated congenital aortic stenosis who underwent surgical correction at Yonsei cardiovascular center were evaluated. There were 6 male and 2 female patients ranging in age from 2 to 11 years(mean age, 10 years). Combined Hemodynamic-Ultrasonic method was used for studying left ventricular wall stress. We compared the wall stress peak systolic pressure gradient and ejection fraction preoperatively and postoperatively. Result: After surgical correction peak aortic gradient fell from 58.4${\pm}$17.6, to 23.7${\pm}$17.7 mmHg(p=0.018) and left ventricular ejection fraction decreased but it is not statistically significant. In the consideration of some factors that influence left ventricular end-systolic wall stress excluding one patient who underwent reoperation for restenosis of left ventricular outflow tract left ventricular end-systolic pressure and left ventricular end-systolic dimension were fell from 170.6${\pm}$24.3 to 143.7${\pm}$27.1 mmHg and from 1.78${\pm}$0.4 to 1.76${\pm}$0.4 cm respectively and left ventricular posterior wall thickness was increased from 1.10${\pm}$0.2, to 1.27${\pm}$0.3cm but it was not statistically singificant whereas left ventricular end-systolic wall stress fell from 79.2${\pm}$24.9 to 57.1${\pm}$27.6 kdynes/cm2(p=0.018) in 7 patients. For one patient who underwent reoperation peak aortic gradient fell from 83.0 to 59.7 mmHg whereas left ventricular end-systolic wall stress increased from 67.2 to 97.0 kdynes/cm2 The intervals did not change significnatly. Conclusion ; We believe that probably some factors that are related to left ventricular geometry influenced the decreased left ventricular wall stress immediately after surgical correction of isolated congenital aortic stenosis. Left ventricular wall stress is a noninvasive measurement and can allow for more direct assesment than measuring peak aortic gradient particularly in consideration of the stress and oxygen consumption of the myocardium therefore we can conclude it is a useful measurement for postoperative assessment of congenital aortic stenosis.

  • PDF

Themally Loaded Characteristics of Diesel Engine Piston (디젤기계의 피스톤 열부하 특성에 관한 연구)

  • Han, Mun-Sik;Park, Tae-In
    • 한국기계연구소 소보
    • /
    • s.15
    • /
    • pp.91-103
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the diesel engine. The induced stress are calculated by the Finite Element Method(FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literature. 2) It is confirmed that maximum compressive stress are induced in the part of outside wall between the piston crown and the pin bush. 3) In the axial direction, the hoop stresses are changed its sigh at the portion of crown near the inner wall side 4)Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piton crown and the pin bush in radical direction 5)in case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress

  • PDF

Stress analysis of marine diesel engine piston (선박용 디젤기관의 피스톤 응력해석)

  • 한문식;김상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.143-152
    • /
    • 1985
  • In this paper, temperature distribution and thermal stress are investigated considering engine peak pressure and the time average temperature distribution in the piston under running conditions for the marine diesel engine. The induced stress are calculated by the Finite Element Method (FEM). The results obtained are summerized as follows. 1) The results calculated by the FEM present good agreement with other numerical solution in literatures. 2) It is comfirmed that the maximum compressive stresses are induced in the part of outside wall between the piston crown and the pin bush 3) In the axial direction, the hoop stresses are changed its sign at the portion of crown near the inner wall side. 4) Large gradient of temperature is shown in the piston crown near the side wall in the axial direction, in the part between the piston crown and the pin bush in radial direction. 5) In case of stress distribution of piston wall surface in the axial direction, the hoop stress is a little greater than axial stress, and the latter is greater than the radial stress.

  • PDF

Numerical Analysis of Transitional Flow in a Stenosed Carotid Artery (협착된 경동맥내 천이 유동 수치 해석)

  • Kim, Dongmin;Hwang, Jinyul;Min, Too-Jae;Jo, Won-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.1
    • /
    • pp.52-63
    • /
    • 2022
  • Direct numerical simulation of blood flow in a stenosed, patient-specific carotid artery was conducted to explore the transient behavior of blood flow with special emphasis on the wall-shear stress distribution over the transition region. We assumed the blood as an incompressible Newtonian fluid, and the vessel was treated as a solid wall. The pulsatile boundary condition was applied at the inlet of the carotid. The Reynolds number is 884 based on the inlet diameter, and the maximum flow rate and the corresponding Womersley number is approximately 5.9. We found the transitional behavior during the acceleration and deceleration phases. In order to quantitatively examine the wall-shear stress distribution over the transition region, the probability density function of the wall-shear stress was computed. It showed that the negative wall-shear stress events frequently occur near peak systole. In addition, the oscillatory shear stress index was used to further analyze the relationship with the negative wall-shear stress appearing in the systolic phase.

Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications

  • Li, Yangyang;Zhang, Shichuan;Zhang, Baoliang
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.459-466
    • /
    • 2018
  • By conducting uniaxial loading cycle tests on the coal rock with outburst proneness, the dilatation characteristics at different loading rates were investigated. Under uniaxial loading and unloading, the lateral deformation of coal rock increased obviously before failure, leading to coal dilatation. Moreover, the post-unloading recovery of the lateral deformation was rather small, suggesting the onset of an accelerated failure. As the loading rate increased further, the ratio of the stress at the dilatation critical point to peak-intensity increased gradually, and the pre-peak volumetric deformation decreased with more severe post-peak damage. Based on the laboratory test results, the lateral deformation of the coals at different depths in the #1302 isolated coal pillars, Yangcheng Coal Mine, was monitored using wall rock displacement meter. The field monitoring result indicates that the coal lateral displacement went through various distinct stages: the lateral displacement of the coals at the depth of 2-6 m went through an "initial increase-stabilize-step up-plateau" series. When the coal wall of the working face was 24-18 m away from the measuring point, the coals in this region entered the accelerated failure stage; as the working face continued advancing, the lateral displacement of the coals at the depth over 6 m increased steadily, i.e., the coals in this region were in the stable failure stage.

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Flow comparison between Stenosed Coronary and Abdominal Arteries (협착된 관상동맥과 복부 대동맥의 유동 특성 비교)

  • Kim, M.C.;Lee, C.S.;Kim, C.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.585-590
    • /
    • 2001
  • The hemodynamic characteristics were compared using commercial CFD code for the stenosed coronary and abdominal arteries. Numerical calculations were carried out in the axisymmetric arteries over the stenotic diameter ratios ranging from 0.25 to 0.875 (6 cases) employing the typical physiological flow conditions. In case of the coronary artery, there was only one recirculation zone observed distal to the stenosis throat during the major portion of the period. However, in case of the abdominal aorta, there were complex recirculation regions found proximal and distal to stenosis throat. For both models, the wall shear stresses(WSS) increased sharply in the converging stenosis, reaching a peak just upstream of the throat, and became negative or low values in the post-stenotic recirculation region. As the results, the oscillatory shear index(OSI) was abruptly increased at the stenosis throat. For the coronary stenosis model, the second peak in the OSI was observed distal to the stenosis. The distance between the first peak and the second peak was increased as the degree of the stenosis was raised. On the orther hand, the abdominal stenosis model showed a complex oscillatory behavior in the OSI index and did not showed such a strong second peak. As the degree of stenosis was increased, recirculation regions of the both arteries were extended much longer and flow pattern became more complex.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Hemodynamic Stress Changes due to Compensatory Remodelling of Stenosed Coronary Artery (협착이 발생된 관상동맥의 보상적 재형성에 따른 혈류역학적 응력변화)

  • Cho, Min-Tae;Suh, Sang-Ho;Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.529-532
    • /
    • 2001
  • The purposes of the present study are to investigate hemodynamic characteristics and to define shear-sensitive remodeling in the stenosed coronary models. Two models for the compensatory remodelling used for this research are a pre-stenotic dilation and a post-stenotic dilation models for the computer simulation. The peak wall shear stress on the post-stenotic model is higher than that of the pre-stenotic model. Two recirculation zones are generated in the pre-stenotic model, and the zones in the pre-stenotic model are smaller than those in the post-stenotic model. Variation of the wall shear stress in the pre-stenotic model is lower than that in the post-stenotic model. In computer simulation with the post-stenotic model, higher temporal and spatial shear fluctuation and stress suggested shear-sensitive remodeling. Shear-sensitive remodeling may be associated with the increased risk of plaque rupture, the underlying cause of acute coronary syndromes, and sudden cardiac death.

  • PDF