• Title/Summary/Keyword: peak ground velocity

Search Result 149, Processing Time 0.023 seconds

The Effects of Ankle Taping on Ankle Angular Velocity, Ground Reaction Force and Postural Stability during Jump Landing on Athlete with Functional Ankle Instability (기능적 발목 불안정성을 가진 선수에게 발목 테이핑이 점프 후 착지 시 발목 각속도, 지면반력과 자세 안정성에 미치는 영향)

  • Kim, Kyoung-Hun;Cho, Joon-Heang
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • The effects of taping on the use of such measures for prevention have already been comprehensively described in the literature. However, few studies have analyzed ground reaction forces and postural stability with functional ankle instability subject during dynamic activities with ankle taping The purpose of this study was to identify the effects of ankle taping on ground reaction force and postural stability during jump landing. Fourteen players who has ankle instability were participated in this study. we used vicon and force platform. The application of taping who has ankle instability decreased DF and inversion angular velocity and peak vertical ground reaction force during landing. It also improved A-P cop, M-L cop in stability. The findings of this study support the use of taping as part of injury prevention for subject with functional ankle instability in clinical setting.

Relationship between Leg Stiffness and Kinematic Variables According to the Load while Running

  • Hyun, Seung Hyun;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • Objective: This study aimed to investigate the relationship between leg stiffness and kinematic variables according to load while running. Method: Participants included eight healthy men (mean age, $22.75{\pm}1.16years$; mean height: $1.73{\pm}0.01m$; mean body weight, $71.37{\pm}5.50kg$) who ran with no load or a backpack loaded with 14.08% or 28.17% of their body weight. The analyzed variables included leg stiffness, ground contact time, center of gravity (COG) displacement and Y-axis velocity, lower-extremity joint angle (hip, knee, ankle), peak vertical force (PVF), and change in stance phase leg length. Results: Dimensionless leg stiffness increased significantly with increasing load during running, which was the result of increased PVF and contact time due to decreased leg lengths and COG displacement and velocity. Leg length and leg stiffness showed a negative correlation (r = -.902, $R^2=0.814$). COG velocity showed a similar correlation with COG displacement (r = .408, $R^2=.166$) and contact time (r = -.455, $R^2=.207$). Conclusion: Dimensionless leg stiffness increased during running with a load. In this investigation, leg stiffness due to load increased was most closely related to the PVF, knee joint angle, and change in stance phase leg length. However, leg stiffness was unaffected by change in contact time, COG velocity, and COG displacement.

Effects of Task-Oriented Circuit Class Training on Improves Performance of Locomotor in Disabled Persons after Stroke (과제-지향 순회 훈련이 뇌졸중 장애인의 이동 능력에 미치는 효과)

  • Kim, Soo-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2011
  • Purpose : The purpose of this study was to identify the effects of circuit class training on the performance of locomotor tasks in chronic stroke. Methods : The study included 45 patients with chronic stroke randomly divided into experimetal group and control group. Both groups participated in exercise classes three times a week for 8weeks. The experimental group had 10 workstation of circuit class designed to improve walking. The control group practiced fitness exercises by equipment in health center. Walking performance was assessed by measuring walking speed(timed 10-meter walk and TUG), GAITRite analysis and peak vertical ground reaction force through the affected foot during walking. Results : The experimental group demonstrated significant improvement(p<.05) compared with the control group in 10-meter walking and vertical ground reaction force after training. The experimental group showed significant improvements in the walking velocity and cadence by GAITRite system(p<.05). Conclusion : Task- oriented circuit class training leads to improvements in locomotor function in chronic stroke. Further studies are necessary to occur in usual environments to improve walking performance.

A Biomechanical Gait Analysis of Patients with Parkinson's Disease by Auditory Cues Velocity (청각 신호 속도에 따른 파킨슨병 환자의 생역학적 보행 분석)

  • Kim, Eun-Jung;Han, Jin-Tae;Jung, Jae-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2013
  • PURPOSE: The purpose of this study was to determine if auditory cues velocity has a greater effect on the gait pattern of patients with Parkinson's disease (PD) than the cues applied individually. METHODS: The subjects were 15 elderly patients diagnosed with PD, 15 healthy elderly persons. Patients were measured of three conditions performed in random order: slow, general, fast. The auditory cue velocity consisted of a metronome beat ${\pm}20%$ than the subject's general gait speed. Using a motion analysis and a force platform measurement system, changes in spatiotemporal variables, kinetic and kinematic variables were compared to gait analysis. RESULTS: Comparison between the auditory cues velocity, there was a significant difference in the spatiotemporal variables with regard to the cadence, stride length, support time, step length, double support time (p<.05). Comparison between the auditory cues velocity, there was a significant increase general and fast velocity gait than slow velocity gait in the maximum flexion in swing phase of knee joint (p<.05). There appears to be the aspect of an increasing ground reaction force (GRF) on the first peak in the vertical axis (p<.05). CONCLUSION: Auditory cues velocity improved of spatio-temporal factors, kinematic and kinetic factors depending on the velocity of the faster. Therefore at the rehabilitation training of PD patients auditory cues velocity would be used for recovery and gait reeducation, may arise through the patients functional ability.

A Study on Development of an Earthquake Ground-motion Database Based on the Korean National Seismic Network (국가지진관측망 기반 지진동 데이터베이스 개발 연구)

  • Choi, Sae-Woon;Rhie, Junkee;Lee, Sang-Hyun;Kang, Tae-Seob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • In order to improve the ground-motion prediction equation, which is an important factor in seismic hazard assessment, it is essential to obtain good quality seismic data for a region. The Korean Peninsula has an environment in which it is difficult to obtain strong ground motion data. However, because digital seismic observation networks have become denser since the mid-2000s and moderate earthquake events such as the Odaesan earthquake (Jan. 20, 2007, ML 4.8), the 9.12 Gyeongju earthquake (Sep. 12, 2016, ML 5.8), and the Pohang earthquake (Nov. 15, 2017, ML 5.4) have occurred, some good empirical data on ground motion could have been accumulated. In this study, we tried to build a ground motion database that can be used for the development of the ground motion attenuation equation by collecting seismic data accumulated since the 2000s. The database was constructed in the form of a flat file with RotD50 peak ground acceleration, 5% damped pseudo-spectral acceleration, and meta information related to hypocenter, path, site, and data processing. The seismic data used were the velocity and accelerogram data for events over ML 3.0 observed between 2003 and 2019 by the Korean National Seismic Network administered by the Korea Meteorological Administration. The final flat file contains 10,795 ground motion data items for 141 events. Although this study focuses mainly on organizing earthquake ground-motion waveforms and their data processing, it is thought that the study will contribute to reducing uncertainty in evaluating seismic hazard in the Korean Peninsula if detailed information about epicenters and stations is supplemented in the future.

Seismic Performance of Transportation Networks (지진으로 인한 교통망 피해추정 기법)

  • Kim, Sang-Hoon;Massanobu, Shinozuka;Kim, Jong-In
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.43-52
    • /
    • 2004
  • This paper describes a method of evaluating seismic system performance of highway transportation network in California. The basic element that plays a crucial role in this study is the fragility information of highway bridges in Caltrans' (California Department of Transportation) freeway network. The bridge fragility information is expressed as a function of the ground motion intensity, such as peak ground acceleration (PGA) or peak ground velocity (PGV). Network damage was evaluated under the 1994 Northridge earthquake and scenario earthquakes. A probabilistic model was developed to determine the effect of repair of bridge damage on the improvement of the network performance as days passed after the event. As an example, the system performance degradation measured in terms of an index, “Drivers Delay”, is calculated for the Los Angeles area transportation system, and losses due to Drivers Delay with and without retrofit were estimated.

A Study on the Probability distribution of Recent Annal Fluctuating Wind Velocity (최근 연최대변동풍속의 확률분포에 관한 연구)

  • Oh, Jong Seop;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study is concerned with the estimation of fluctuate wind velocity statistic properties in the major cities reflecting the recent meteorological with largest data samples (yearly 2003-2012). The basic wind speeds were standardized homogeneously to the surface roughness category C, and to 10m above the ground surface. The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design (gust load peak factor) on the basis of Gaussian processes. This assumption breaks down when the loading processes exhibits non-Gaussianity, in which a conventional wind design yields relatively non conservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. This study seeks to ascertain the probability distribution function from recently wind data with effected typhoon & maximum instantaneous wind speed.

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

Effect of Ground Vibration on Surface Structures and Human Environments -Application of Blasting Vibration to Induced Seismicity in EGS Hydraulic Stimulation- (지반진동이 지상구조물 및 환경에 미치는 영향평가 -발파진동 사례를 통한 EGS 수리자극에의 활용-)

  • Lee, Chung-In;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.521-537
    • /
    • 2013
  • While microseismicity induced by hydraulic stimulation carried out for EGS is useful means in estimating the range of permeability increase, it also affect surface structures and environments. In order to establish a mitigation plan for microseismicity triggered by hydraulic stimulation, we reviewed world-wide guidelines on the impact of ground vibration on the surface structure and human environment by blasting. Case studies from Europe and USA on the microseismicity by hydraulic stimulation are presented and suggestions are made for the guidelines on ground vibration by hydraulic stimulation for the ongoing Pohang EGS project.

Influence of Inner-hole Priming Location on Ground Vibration (발파공내 기폭위치가 지반진동에 미치는 영향)

  • Kim, Jae-Woong;Kang, Choo-Won;Ko, Chin-Surk
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • In this study, the influence of priming location inside a blast hole on the ground vibration has been studied. In most of the previous studies dealing with the ground vibration, the effect of priming location in a blast hole was usually considered in a limited way. Thus, it seems that the results of the studies can be applicable only to the relevant sites. Considering the fact that the mechanism of ground vibration caused by blasting is quite complex, the priming location can have a considerable effect on the ground vibration in certain situations and be an important parameter in a blasting design. To identify the characteristics of the wave propagation according to priming locations, total 72 test blasts were carried out with different spacing, burden, drilling length, and charge, and prediction equations were derived. The characteristics of ground vibration, which was changed according to the priming location, was analyzed by using the nomogram of peak particle velocity (PPV) record. Attenuation relations, which were also dependent on the priming location, were analyzed. In this case, four different amounts of charge, that is, 0.5, 1.6, 5, and 15 kg, were used for the test. This criterion of charge amount is specified in the "Blasting design and construction guidelines to road construction" by the Ministry of Land, Transport and Maritime Affairs of Korea.