• 제목/요약/키워드: peak ground displacement

검색결과 102건 처리시간 0.035초

응답스펙트럼 계산을 위한 잡음기준 (Noise Criteria for the Calculation of Response Spectra)

  • 노명현;최강룡;윤철호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.238-246
    • /
    • 2003
  • By using simulated ground motions, which is sum of earthquake signals and noise, we measured the distortion of response spectra due to noise. We found that the distortion is more closely related to the signal-to-noise (S/N) ratio of root-mean-square (RMS) measurement than that of conventional peak measurement. Given a S/M ratio, the distortion of absolute acceleration response spectra is independent on the earthquake magnitude, while that of relative displacement response spectra has a strong dependence on the earthquake magnitude. This means that, when we calculate response spectra from time histories, we can efficiently predict the distortion of acceleration response spectra simply by measuring the RMS SJN ratios, or the distortion of displacement response spectra by combining the RMS S/N ratios and the earthquake magnitudes.

  • PDF

Assessment of pushover-based method to a building with bidirectional setback

  • Fujii, Kenji
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.421-443
    • /
    • 2016
  • When conducting seismic assessment of an asymmetric building, it is essential to carry out three-dimensional analysis considering all the possible directions of seismic input. For this purpose, the author proposed a simplified procedure is to predict the largest peak seismic response of an asymmetric building subjected to horizontal bidirectional ground motion acting in an arbitrary angle of incidence in previous study. This simplified procedure has been applied to torsionally stiff (TS) asymmetric buildings with regular elevation. However, the suitability of this procedure to estimate the peak response of an asymmetric building with vertical irregularity, such as an asymmetric building with setback, has not been assessed. In this article, the pushover-based simplified procedure is applied to estimate the peak response of asymmetric buildings with bidirectional setback. Nonlinear dynamic (time-history) analysis of two six-storey asymmetric buildings with bidirectional setback and designed according to strong-column weak beam concept is carried out considering various directions of seismic input, and the results compared with those estimated by the proposed method. The largest peak displacement estimated by the simplified method agrees well with the envelope of the dynamic analysis response. The suitability assessment of the simplified procedure to analysed building models is made as well based on pushover analysis results.

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • 제21권5호
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

1/3축소 3층 삼환까뮤 P.C 모델의 진동대 실험 (Shaking Table Test of 1/3-Scale 3-Story Sam-Hwan Camus Precast Concrete Model)

  • 이한선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.140-154
    • /
    • 1992
  • The objective of the research stated here was aimed at providing the information needed to establish the Korean Seismic Design Code Recommendations and Guides for precast concrete (P.C) large panel apartment buildings. This was accomplished by investigation and analysis of the response of P.C large panel structures subjected to shaking table excitation simulating earthquake ground motion. one of the test specimens used was 1/3-scaled 3-story box P.C model provided by Sam-Hwan Camus Corporation. The 4m $\times$4m shaking table was used to simulate the earthquake ground motion. the employed input accelerogram was the one recorded as Taft N21E component and the peak ground acceleration(PGA) was scaled depending on the desired level of seismic severity and the time according to dynamic similitude rule. Based on results obtained from shaking table test of this P.C model, the following conclusions were drawn . (1) As far as test specimen is concerned, the seismic safety factors turns out to be 7~8. (2)P.C model has damping ratio of about8% which is twice larger than in-situ R.C. structure. And (3)this model has global displacement ductility ratio of 2~3 through the energy dissipation by opening and sliding of joints.

  • PDF

국내외 판내부 지진기록을 이용한 한국 표준수직설계스펙트럼의 개발 (Development of Korean Standard Vertical Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.413-424
    • /
    • 2016
  • The vertical design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. From the statistical analysis of the vertical response spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement. The ratio of vertical to horizontal response spectrum for each record is calculated. Statistical analysis of the ratios rendered the vertical to horizontal ratio (V/H ratio). Subsequently the ratio between the peak vertical ground acceleration to the horizontal one is obtained.

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • 제20권6호
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

바이브로 해머 및 RCD 공법 적용시 기존터널에 미치는 진동영향해석 (A study on the effect of ground vibration induced by vibrohammer and RCD on adjacent subway tunnel)

  • 허영;남기천;김태형;방진호;곽창원
    • 한국터널지하공간학회 논문집
    • /
    • 제5권2호
    • /
    • pp.135-146
    • /
    • 2003
  • 본 논문에서는 교량 기초를 위한 널말뚝 압입과 RCD 말뚝 시공시에 발생하는 진동에 대한 기존 지하철 구조물의 안정성을 유한차분법에 의한 동적수치해석을 이용하여 고찰하였다. 먼저 진동에 의한 구조물의 안정성 평가 기준을 국내외 사례를 토대로 제안하고 바이브로 해머의 제원과 하중제안식을 바탕으로 수치해석을 수행하여 널말뚝 압입시 발생하는 최대입자속도를 산정하였다. 아울러 RCD 말뚝 시공시 비트진동에 의한 토체의 진동속도를 실측치와 경험식을 이용하여 산정하고 그 결과를 허용진동기준과 비교하였다. 진동하중 하에서 시간에 따라 터널 천단, 어깨부 및 측벽부에서의 응답과 구조물 부재의 축응력, 전단응력 및 최대 휨압축응력이력을 제안된 기준과 비교하여 터널의 안정성을 검토하였다.

  • PDF

입체시력 감소가 장애물 보행에 미치는 영향 (Effects of induced stereoacuity reduction on obstacle crossing)

  • 우병훈;설정덕
    • 한국체육학회지인문사회과학편
    • /
    • 제54권5호
    • /
    • pp.829-840
    • /
    • 2015
  • 본 연구는 정상시를 가진 정상인을 대상으로 입체시 부족을 유발하여 장애물 보행 시 발생될 것으로 생각되는 하지관절의 운동 변화에 대한 운동학적 분석과 지면반력의 변화를 고찰하는 것이다. 본 연구의 대상자는 입체시 테스트를 거쳐 통과한 18명이 연구에 참여하였다(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). 3차원 동작분석 시스템과 지면반력기를 이용하여 분석한 결과는 다음과 같다. 보행속도는 장애물 보행 시 느리게 나타났다. 고관절 각변위는 대부분 보행구간에서 장애물 보행 시 굴곡이 크게 나타났다. 무릎관절 각변위는 모든 보행구간에서 장애물 보행 시 굴곡이 크게 일어났고, TO와 FC2에서 입체시 감소의 영향으로 굴곡이 크게 나타났다. 발목관절 각 변위는 FC2에서 장애물 보행 시 굴곡이 크게 나타났다. 몸통기울기는 MSt, TO, MSw에서 장애물 보행 시 신전이 크게 나타났다. 지면반력은 Fx 값(내외측힘)에서 차이가 나타나지 않았지만, Fy 값(전후힘)에서 좌우발 모두 장애물 보행 시 전방 최대힘(추진력)이 크게 나타났고, 후방 최대힘(제동력)은 오른발은 입체시부족 보행 시 크게 나타났으며, 왼발은 장애물 보행 시 크게 나타났다. Fz 값(수직힘)은 최대힘-1과 최대힘-2에서 좌우발 모두 장애물 보행 시 최대 힘이 크게 나타났고, 계곡힘에서 오른발은 입체시부족 보행이 정상시 보행보다 작은힘이 나타났다.