• Title/Summary/Keyword: peak ground acceleration

Search Result 290, Processing Time 0.026 seconds

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

A Study on Estimating Earthquake Magnitudes Based on the Observed S-Wave Seismograms at the Near-Source Region (근거리 지진관측자료의 S파를 이용한 지진규모 평가 연구)

  • Yun, Kwan-Hee;Choi, Shin-Kyu;Lee, Kang-Ryel
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.121-128
    • /
    • 2024
  • There are growing concerns that the recently implemented Earthquake Early Warning service is overestimating the rapidly provided earthquake magnitudes (M). As a result, the predicted damages unnecessarily activate earthquake protection systems for critical facilities and lifeline infrastructures that are far away. This study is conducted to improve the estimation accuracy of M by incorporating the observed S-wave seismograms in the near source region after removing the site effects of the seismograms in real time by filtering in the time domain. The ensemble of horizontal S-wave spectra from at least five seismograms without site effects is calculated and normalized to a hypocentric target distance (21.54 km) by using the distance attenuation model of Q(f)=348f0.52 and a cross-over distance of 50 km. The natural logarithmic mean of the S-wave ensemble spectra is then fitted to Brune's source spectrum to obtain the best estimates for M and stress drop (SD) with the fitting weight of 1/standard deviation. The proposed methodology was tested on the 18 recent inland earthquakes in South Korea, and the condition of at least five records for the near-source region is sufficiently fulfilled at an epicentral distance of 30 km. The natural logarithmic standard deviation of the observed S-wave spectra of the ensemble was calculated to be 0.53 using records near the source for 1~10 Hz, compared to 0.42 using whole records. The result shows that the root-mean-square error of M and ln(SD) is approximately 0.17 and 0.6, respectively. This accuracy can provide a confidence interval of 0.4~2.3 of Peak Ground Acceleration values in the distant range.

Development of Anti-disaster System for Natural Gas Governor Station Using Wire and/or Wireless Communication ($\cdot$무선 데이터 통신을 이용한 천연가스 정압소의 안전방재 시스템 개발)

  • Yoo Hui Ryong;Park Dae Jin;Koo Sung Ja;Park Seoung Soo;Rho Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.2 s.7
    • /
    • pp.17-23
    • /
    • 1999
  • The wire and/or wireless data communication system for anti-disaster system of natural gas governor station was developed. In oder to prevent accidents of governor station, the operator was replaced by RTU(Remote Terminal Unit) which gather and transmit safety situation of governor station. The database and MMI(Man Machine Interface) were also developed to analyze the situation of governor station. The data communication between server and RTU was designed to switch automatically from wire to wireless communication and vice versa when one of them failed communication. We also have developed the patrol car management system which was applied GPS(Global Position System)/GIS(Geometric Information System), and the earthquake detection/transmission system which was adopted three dimension acceleration sensor. When a earthquake may occur, the earthquake detection/transmission system monitors data such as PGA(Peak Ground Acceleration), Sl(Spectrum Intensity) and orders the emergency shutoff valve close immediately.

  • PDF

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

Earthquake Monitoring : Future Strategy (지진관측 : 미래 발전 전략)

  • Chi, Heon-Cheol;Park, Jung-Ho;Kim, Geun-Young;Shin, Jin-Soo;Shin, In-Cheul;Lim, In-Seub;Jeong, Byung-Sun;Sheen, Dong-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.268-276
    • /
    • 2010
  • Earthquake Hazard Mitigation Law was activated into force on March 2009. By the law, the obligation to monitor the effect of earthquake on the facilities was extended to many organizations such as gas company and local governments. Based on the estimation of National Emergency Management Agency (NEMA), the number of free-surface acceleration stations would be expanded to more than 400. The advent of internet protocol and the more simplified operation have allowed the quick and easy installation of seismic stations. In addition, the dynamic range of seismic instruments has been continuously improved enough to evaluate damage intensity and to alert alarm directly for earthquake hazard mitigation. For direct visualization of damage intensity and area, Real Time Intensity COlor Mapping (RTICOM) is explained in detail. RTICOM would be used to retrieve the essential information for damage evaluation, Peak Ground Acceleration (PGA). Destructive earthquake damage is usually due to surface waves which just follow S wave. The peak amplitude of surface wave would be pre-estimated from the amplitude and frequency content of first arrival P wave. Earthquake Early Warning (EEW) system is conventionally defined to estimate local magnitude from P wave. The status of EEW is reviewed and the application of EEW to Odesan earthquake is exampled with ShakeMap in order to make clear its appearance. In the sense of rapidity, the earthquake announcement of Korea Meteorological Agency (KMA) might be dramatically improved by the adaption of EEW. In order to realize hazard mitigation, EEW should be applied to the local crucial facilities such as nuclear power plants and fragile semi-conduct plant. The distributed EEW is introduced with the application example of Uljin earthquake. Not only Nation-wide but also locally distributed EEW applications, all relevant information is needed to be shared in real time. The plan of extension of Korea Integrated Seismic System (KISS) is briefly explained in order to future cooperation of data sharing and utilization.

A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use (기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구)

  • Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Comparison of Methods for the Analysis Percentile of Seismic Hazards (지진재해도의 백분위수 분석 방법 비교)

  • Rhee, Hyun-Me;Seo, Jung-Moon;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.43-51
    • /
    • 2011
  • Probabilistic seismic hazard analysis (PSHA), which can effectively apply inevitable uncertainties in seismic data, considers a number of seismotectonic models and attenuation equations. The calculated hazard by PSHA is generally a value dependent on peak ground acceleration (PGA) and expresses the value as an annual exceedance probability. To represent the uncertainty range of a hazard which has occurred using various seismic data, a hazard curve figure shows both a mean curve and percentile curves (15, 50, and 85). The percentile performs an important role in that it indicates the uncertainty range of the calculated hazard, could be calculated using various methods by the relation of the weight and hazard. This study using the weight accumulation method, the weighted hazard method, the maximum likelihood method, and the moment method, has calculated the percentile of the computed hazard by PSHA on the Shinuljin 1, 2 site. The calculated percentile using the weight accumulation method, the weighted hazard method, and the maximum likelihood method, have similar trends and represent the range of all computed hazards by PSHA. The calculated percentile using the moment method effectively showed the range of hazards at the source which includes a site. This study suggests the moment method as effective percentile calculation method considering the almost same mean hazard for the seismotectonic model and a source which includes a site.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.