• Title/Summary/Keyword: pavement type

Search Result 245, Processing Time 0.029 seconds

Performance Evaluation of Long-Life Asphalt Concrete Overlays Based on Field Survey Monitoring in National Highways (일반국도 현장조사 모니터링을 통한 장수명 아스팔트 덧씌우기 포장의 공용성 분석)

  • Baek, Jongeun;Lim, Jae Kyu;Kwon, Soo Ahn;Kwon, Byung Yoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.69-76
    • /
    • 2015
  • PURPOSES : Performance evaluation of four types of asphalt concrete overlays for deteriorated national highways. METHODS : Pavement distress surveys for crack rate and rut depth have been conducted annually using an automated pavement survey vehicle since 2007. Linear and non-linear performance prediction models of the asphalt concrete overlays were developed for 43 sections. The service life of the asphalt overlays was defined as the number of years after which a crack rate of 30% or rut depth of 15mm is observed. RESULTS : The service life of the asphalt overlays was estimated as 17.4 years on an average. In 90.7% of the sections, the service life of the overlays was 15 years or more which is 1.5 times the life of conventional asphalt concrete overlays used in national highways. The performance of the overlays was dependent on the type of asphalt mixture, traffic volume levels, and environmental conditions. CONCLUSIONS : The usage of stone mastic asphalt (SMA) and polymer-modified asphalt (PMA) for the overlays provided good resistance to cracking and rutting development. It is recommended that appropriate asphalt concrete overlays must be applied depending on the type of existing pavement distress.

COST BENEFIT ANALYSIS OF HIGHWAY SYSTEMS

  • Darren Thompson;Don Chen;Nick Walker;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.494-496
    • /
    • 2013
  • Cost-Benefit Analysis (CBA) is a systematic optimization process that allows users to compare different alternatives and to determine if a project is a solid investment. Many state DOTs have included CBA in their pavement management systems (PMSs) to help allocate state funds for maintenance, rehabilitation, resurfacing, and reconstruction of pavements. In a typical CBA, each pavement type has an assigned weight factor which represents the level of importance of this pavement type. To conduct an accurate CBA, it is essential to select appropriate weight factors. Arbitrarily assigning weights factors to pavements can lead to biased and inaccurate funding allocation decisions. The purpose for this paper is to outline a method to develop an ideal set of weight factors that can be utilized to conduct more accurate CBA. To this end, a matrix of all possible weight factors sets was developed. CBA was conducted for each set of weight factors to obtain a population of possible optimization solutions. Then a regression analysis was performed to establish the relationship between benefit and weight factors. Finally, a multi-objective genetic algorithm was applied to select the optimal set of weight factors. The findings from this study can be used by state DOTs to strategically manage their roadway systems in a cost effective manner.

  • PDF

Estimation of Cumulative Axle-Load Spectrum for Axle-Load Distribution Standard by Vehicle Type (차종별 축하중 분포 정량화를 위한 누적 축하중 스펙트럼 추정연구)

  • An Ji-Hwan;Ohm Byung-Sik;Kim Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.29-37
    • /
    • 2006
  • The primary objective of this study is to characterize traffic axle loadings that consider Korea specific traffic conditions for developing mechanistic-based pavement design method as a part of Korea Pavement Research Program(KPRP). Although the concept of equivalent single axle load(ESAL) has been generally used since the 1960s for the pavement design, the mechanistic-based pavement design procedure requires more accurate axle loading data on the specific pavement. In this study, axle loading data were collected according to vehicle type and highway functional classification. Axle-load spectrum was then standardized by cumulative density function(cdf), because the axle load spectrum could vary from the observed site, truck traffic volume, and truck type, Finally, this study presented the procedure and S-shaped exponential models for characterizing axle load spectra according to vehicle type and highway functional classification.

  • PDF

Evaluation of Functional and Structural Performance of Semi Rigid Overlay Pavements (반강성 덧씌우기 포장의 기능적 및 구조적 성능 평가)

  • Park, Kang Yong;Lee, Jae Jun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.271-278
    • /
    • 2010
  • Semi rigid pavement is a pavement type using advantages of both flexibility of asphalt pavement and rigidity of concrete pavement by infiltrating cement paste into voids of open graded asphalt mixtures. The semi rigid pavement has better smoothness and smaller driving vibration or noise comparing to the concrete pavement, and has smaller permanent deformation and has temperature falling effect comparing to the asphalt pavement. The temperature falling effect were investigated at a semi rigid overlay pavement test section, and the temperature falling and water retaining effects were verified by measuring the temperature and weight of specimens at a housetop. Horizontal and vertical stresses and strains were compared by structural analysis of the semi rigid pavement and asphalt pavement using the Abaquser o, a commercial 3D finite element analysis program. The results were verified by Bisar 3.0, a multi-layered elastic analysis program. Performance of the semi rigid pavement and asphalt pavement were compared by predicting fatigue cracking based on the structural analysis results.

A Study on the Properties of Roller Compacted Concrete Pavement for Environmental Friendly Bike Road (친환경 자전거도로를 위한 롤러 다짐 콘크리트 포장의 기초물성에 관한 연구)

  • Lee, Chang-Ho;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.103-111
    • /
    • 2010
  • Recently, usage bicycle has been encouraged to reduce energy consumption and $CO_2$. For this purpose, lots of bike road construction are planned. Typical type of pavement used in bikeroad such as asphalt concrete pavement, portland cement concrete pavement, colored pavement, soil pavement. However, these pavement types may need high construction cost comparing the required capacity of bike road. In this study, roller compacted concrete pavement which are economical and durable, are investigated to use as bike road pavement. The optimum compaction level and mix design of roller compacted concrete pavement are suggested by exploring strength test with various mixture ratio and compaction level, Also durability was examined based on freeze-thaw and scaling test. In addition, the cost and amount of carbon emission during in the construction of roller compacted concrete were evaluated and compare with the cost and carbon emission of typical portland cement concrete.

Performance Evaluation of Asphalt Pavement Reinforced with Glass Fiber Sheet Type of Geosynthetics (유리섬유시트 형태의 토목섬유로 보강된 아스팔트 포장의 공용성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the performance evaluation of asphalt pavement reinforced with fiber sheet type of geosynthetics and observations conducted to evaluate the practical efficiencies and performance of overlay asphalt pavement reinforced with geosynthetics. In this study, performance evaluation were performed for the six section of construction site. The performance indcators of asphalt pavement reinforced with geosynthetics has been collected Automatic Road Analyzer (ARAN), Falling Weight Deflectometer (FWD) and have been analyzed for rutting, cracking ratio, falling weight and international roughness index. As a result of performance evaluations, geosynthetics reinforced asphalt pavement is sigficant effect on increasing a cracking resistance than the non-reinfroced asphalt pavement, also rutting and crak is slowly increase as incerasingly performance period.

Methodology of Field Investigation and Laboratory Test for Distresses of Old Concrete Pavements (노후 콘크리트 포장 파손에 대한 현장조사 및 실내시험 방법)

  • Lee, Ki Sang;Lee, Jun Hyeok;Kang, Min Soo;Cho, Nam Hyun;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.21-29
    • /
    • 2016
  • PURPOSES : The purpose of this study is to suggest a specific investigation guideline to decide priority of repairing old concrete pavements that pile up substantially. METHODS : In this study, a principle of division of homogeneous sections was proposed to reflect the characteristics of the pavement reasonably in the specific investigation results. In addition, a checklist and guideline of field investigation were suggested for the old concrete pavement sections, which require inspection toward their durability and structural performance. Furthermore, the items of laboratory test necessary to the old concrete pavement were suggested based on the existing laboratory test considering characteristics of the old concrete pavement. The present condition of the old concrete pavement could be analyzed by the test results. RESULTS : A method of division of homogeneous sections suitable for the specific investigation of the old concrete pavement was suggested. The proportions of distress severity of pavement sections were compared by distress type to figure out the present state of the old concrete pavement. Scaling, durability cracking (or alkali-silica reaction), and longitudinal spalling were selected as the most severe distress types. The detailed positions of the sections were also suggested. The checklist of the specific investigation was categorized by field survey and laboratory test, and its evaluation criteria were proposed. The three types of the sections of durability cracking (or alkali-silica reaction), bridge connection, and asphalt overlay were selected as the sections of the field survey. The compressive strength, void structure, and chloride penetration depth were suggested as the items of the laboratory test. CONCLUSIONS : A fundamental level of the guideline was suggested in this study to resolve the problem of old concrete pavement. Appropriate guidelines related to the repair of the old concrete pavement should be provided by performing additional research efforts.

A Study on the Performance Evaluation and Comparison of Porous and Drainage Pavement Types (투수성 포장과 배수성 포장 구조형식의 성능평가 및 비교 연구)

  • Kim, Dowan;Jeong, Sangseom;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.47-57
    • /
    • 2018
  • PURPOSES : The permeable pavement type has been rapidly developed for solving problems regarding traffic noise in the area of housing complex and heavy rainwater drainage in order to account for the climate change. In this regards, the objective of this study is to figure out the characteristics of pavement types. METHODS : The laboratory test for deriving optimum asphalt content (OAC) was conducted using the mixtures of the permeable asphalt surface for the pavement surface from Marshall compaction method. Based on its results, the pavement construction at the test field was conducted. After that, the site performance tests for measuring the traffic noise, strength and permeability were carried out for the relative evaluation in 2 months after the traffic opening. The specific site tests are noble close proximity method (NCPX), Light falling deflectometer test (LFWD) and the compact permeability test. RESULTS : The ordered highest values of the traffic noise level can be found such as normal dense graded asphalt, drainage and porous structure types. In the results from LFWD, the strength values of the porous and drainage asphalt types had been lower, but the strength of normal asphalt structure had relatively stayed high. CONCLUSIONS :The porous structure has been shown to perform significantly better in permeability and noise reduction than others. In addition to this study, the evaluation of the properties and the determination of the optimum thickness for the subgrade course under the porous pavement will be conducted using ground investigation technique in the further research.

Bond Strength Characteristics of Bonded Concrete Overlay (접착식 콘크리트 덧씌우기의 부착강도 특성 분석)

  • Park, Jong Won;Kim, Young Kyu;Lee, Seung Woo;Han, Seung Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance since the overlay layer and the existing pavement perform as a monolithic layer. It is important to have suitable bond strength criteria to secure the performance of bonded concrete overlay. This study aimed to investigate the factors influencing bond strength characteristics between existing concrete pavement and overlay material. METHODS: Bond strength between overlay and existing pavement are measured and analyzed for various conditions such as the type of overlay materials, compressive and flexure strength of overlay and existing pavement, and deterioration status of existing pavement. RESULTS: The strength of overlay material does not significantly influence the bond strength. The overlay of ultra-rapid hardening cement generally gives low bond strength. However, ultra rapid hardening polymer modified concrete gives robust bond strength. The deterioration of existing concrete significantly decrease the bond strength. CONCLUSIONS: Bond strength of bonded concrete overlay highly depends on condition of existing concrete pavement rather than overlay material.

Evaluation of Characteristics of Tack Coat for Porous Pavement using Direct Shear Test (직접 전단 실험을 통한 배수성포장용 택코트 특성 평가)

  • Kim, Nak-Seok;Hong, Eun-Cheol;Jo, Shin-Haeng
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The main objective of this study is to develop a test for measuring the bond shear strength between pavement layers. The research is also conducted to evaluate tack coat materials and application rate in porous pavement. The experiment includes using two types of emulsions (RSC-4, Modified Emulsion) and a asphalt binder type (HM-1). HM-1 was developed to be applied in porous pavement. The bond shear strengths were measured by a direct shear type device under various test conditions. The shear strength may not be appropriate in the evaluation of the bond shear strength, while the toughness of the test may be useful. In case of the tack coat application rate in porous pavement, RSC-4 has to be used a minimum amount of $0.8l/m^2$ and modified emulsion asphalt has to be applied a volume of use $0.5{\sim}0.6l/m^2$. HM-1, asphalt cement type, is far stronger bond shear strength than emulsified asphalt tack coat and had showed the excellent trackless property.