• Title/Summary/Keyword: pavement distress

Search Result 80, Processing Time 0.023 seconds

A Study on the Minimization of Water Damage for the Asphalt Inlay of Old Concrete Pavement (노후 콘크리트 포장 절삭 덧씌우기의 침투수에 의한 파손 최소화 방안 연구)

  • Kang, Won Pyoung;Yeom, Kwang Jae;Suh, Young Chan;Lee, Kyoung Ha;Kang, Min Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.53-63
    • /
    • 2013
  • PURPOSES: The purpose of this study was to investigate the disintegration mechanism of concrete due to the infiltration of the moisture to the milling overlay pavement and to come up with a method to minimize the disintegration as well as verifying the effectiveness of the edge sealing and Fogseal method. METHODS : This study investigated the distress mechanism due to the infiltrated moisture remaining in the milling overlay pavement through chloride freezing test and verified the effectiveness of the sealing of the milling edge and fog seal methods, which have been devised to minimize the moisture infiltration, through laboratory water permeability test. Additionally, long-term pavement performance was compared for the effectiveness of the proposed method through under loading test, and field water permeability test was carried out to verify the field applicability of the proposed method. RESULTS: The result of the research confirmed that chloride deteriorates the concrete surface through disintegration and lowers its strength and that the laboratory moisture infiltration test verified the effectiveness of the milling edge sealing and fog seal methods in the deterrence of moisture infiltration to the overlay pavement with excellent long-term performance of the pavement treated with the proposed method. Although the field water permeability test revealed some deterrence of moisture infiltration of the milling edge sealing and fog seal methods to a certain extent, the difference was a little. CONCLUSIONS: The milling edge sealing and fog seal methods are limited in their effectiveness for the cases of improvident compaction management or mixture with large void, and it is believed that installation of subsurface drainage is more effective in these cases.

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

Effect of Joint Spacing on Early-Age Behavior of jointed Concrete Pavement (줄눈콘크리트 포장의 줄눈간격에 따른 초기거동 연구)

  • Yoon, Chang-Ho;Lee, Jae-Hoon;Kim, Hyung-Bae;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.101-110
    • /
    • 2007
  • Joint Spacing of Jointed Concrete Pavement has been uniformly designed and constructed as six-meter in Korea. However, engineering backgrounds to show the appropriateness of six-meter Joint Spacing has not been provided. In the on-going reseach of the development of Korea Pavement Reseach Program(KPRP), the optimum Joint Spacing is suggested as 6 to 8 meters according to the regional climatic conditions based on the mechanical-empirical analysis of short-term and long-term pavement distress. This study is a part of the investigation on the adequateness of Joint Spacing design specification suggested in KPRP. Joint Spacing was design and constructed as seven-meter Joint Spacing suggested as design specification in Korea Reseach Program(KPRP) and monitored the Load Transfer Efficiency(LTE), Random crack and compared with those of adjacent $6{\sim}7$ meter Joint Spacing concrete section.

  • PDF

Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture (고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가)

  • Ahn, Sang Hyeok;Jeon, Sung Il;Nam, Jeong-Hee;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Fatigue Characteristics of Asphalt Concrete Based on compacted Density (아스팔트 콘크리트의 다짐도에 따른 피로 특성)

  • 김광우;이병덕;박용철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.205-210
    • /
    • 1994
  • This study was conducted to evaluate performance of asphalt concretes under various densities, using Marshall specimens before and after freezing-and-thawing treatment. Six different compaction blows per side (20, 30, 40, 50, 60, 70 blows) were applied to specimens to produce different densities. Test results showed that the lower density specimens had the weaker resistance to freezing-and-thawing treatment. The density was an index of retaining fatigue life and displacement after freezing-and-thawing. Therefore, poor compaction in pavement was considered to be a major cause of early distress mechanisms such as rutting, ravelling and cracking, which were resulted in a reduced service life.

  • PDF

Serviceability Evaluation of Asphalt Pavement Using Fuzzy Set System on Personal Computer (PC에서 퍼지?을 이용한 아스팔트 포장의 기능수행가능성 추정)

  • Kim, Kwang Woo;Park, Je Seon;Lee, Seong Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.123-134
    • /
    • 1993
  • This study was deviced to apply fuzzy concepts to pavement serviceability evaluation. An evaluation model was developed based on workmanship of pavement during construction, external load on pavement and current distress level. Five rating fuzzy sets, three weight fuzzy sets were developed based on the concept that the most appropriate balance was achieved in Gd which was established for grading the fuzzy overall rating results. Evaluation criteria and corresponding fuzzy rating scale were suggested. A computer program for evaluating serviceability based on the criteria was developed. The program was operated by simply typing in input data on each question and producing output as Gd on the screen. lt was possible to estimate the pavement serviceability level well using this fuzzy-set-based approach.

  • PDF

An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging (노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가)

  • Kim, Kyungnam;Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • Pavement distress and traffic accidents are caused by pot-hole. In addition, direct and indirect damages of road users are increasing, such as loss of life due to personal injury and damage to vehicles. Generally, the asphalt concrete pavements are continuously aging from the production process to the terminal performance period. Aging causes stripping due to cracks and moisture penetration and weakening the pavement structure to induce pot-hole. In this study, adhesion performance and moisture sensitivity were evaluated according to aging degree in order to investigate the effect of aging on asphalt pavement. As a result of the study, the viscosity of the asphalt binder was increased with aging and the bond strength of the aged was increased 2~3 times than that of the unaged. The results of accelerated aging test showed an increases in indirect tensile strength and the increase in the TSR (Tensile Strength Ratio) by 4.2~8.9 %. As a result, it is noted that the anti-stripping and adhesion performances of the aged asphalt concrete are improved compared to the unaged one under the aging conditions of asphalt binder coated on aggregates.

A Study on Characteristics of Lateral Wheel Path Distributions in Different Traffic Lanes (차로위치에 따른 차량의 횡방향 이격거리 분포 특성에 관한 연구)

  • Jo, Myounghwan;Park, Hyunsik;Jin, Jung Hoon;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.339-346
    • /
    • 2008
  • The research was conducted to investigate the characteristics of lateral wheel path distributions (wandering) in different traffic lanes. The lateral wheel path distributions may affect pavement life and various distress types. The results presented that the normal distribution curve with symmetry was observed in the 2-lane and 3-lane roads. In the case of the 2-lane road (on one direction), the wanderings were 70-95cm, and 70-85cm for the 1st and 2nd lanes, respectively, while in the case of the 3-lane road (on one direction), 50-60cm, 65-85cm, and 80-95cm for the 1st, 2nd, and 3rd lanes, respectively. In addition, the 1st lane vehicles tended to pass on the right side to avoid the opposite side vehicles, while the outside lane vehicles tended to pass on the left side to avoid the walkway.

Development of a Procedure for Remaining Life Estimation in Airfield Concrete Pavement (공항 콘크리트 포장의 잔존수명 산출 논리 개선 연구)

  • Kwon Soo-Ahn;Suh Young-Chan;Cho Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.131-138
    • /
    • 2006
  • Methods of back calculation for either design procedures or elastic moduli obtained from FWD(Falling Weight Deflectometer) tests have widely been used to predict remaining life of airfield concrete pavements. Since the variation of the elastic modulus obtained from the FWD test depends on the back calculation methods, prediction of remaining life of airfield pavement using the back calculation method has not been reliable. In addition, the FWD method only concentrates on the structural integrity of the pavement without considering functional distress. In this study, a newly developed remaining life estimation procedure is proposed. This methodology includes both structural and functional consideration and suggests models and decision criteria for each stage. In order to improve the estimation procedure on remaining life of pavement, conducted the several tests on an old airfield concrete pavement. As a result, it is concluded that the load transfer efficiency on joint is better for predicting remaining life of pavement than the elastic modulus, which is commonly used. In order to verify applicability of the newly developed estimation procedure and detailed models, investigation and analysis were conducted according to the new methodology on C-airfield pavement. Finally, it is confirmed that the efficiency of the proposed method for practical application was good enough.

  • PDF

The Estimation of Durability Factor of Deteriorated Jointed Concrete Pavement Using Image Analysis Test (화상분석 실험을 이용한 열화된 줄눈콘크리트 포장의 내구성 지수 평가)

  • Choi, Pan-Gil;Kim, Yong-Gon;Yun, Kyong-Ku;Kwon, Soo-Ahn
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • The primary objective of this study was to estimate the deterioration degree of jointed concrete pavement which was major concrete pavement type in Korea. First of all, visual survey of concrete pavement was performed to observe deterioration types. In the result of visual survey, the majority of concrete pavement deterioration was investigated in joint area. It is appeared that most of the distresses are durability cracking and joint distress. Second, concrete core specimens were taken from eight locations including good section (4 locations) and bad section (4 locations) based on visual survey. The deterioration reasons of concrete pavement were analyzed with ultrasonic pulse velocity test, splitting tensile strength test, and image analysis for concrete core specimens. Among the image analysis test result for 21 concrete core specimens, only two specimens satisfied the Kansas DOT criteria of spacing factor, $250\;{\mu}m$, and the remains of 19 specimens were estimated to be above $250\;{\mu}m$. The durability factor of concrete was estimated very low. As a result, it was analyzed that the main deterioration reason of the deteriorated jointed concrete pavement was to be freezing and thawing damages.