• Title/Summary/Keyword: patterning process

Search Result 443, Processing Time 0.026 seconds

Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography (AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작)

  • Park Jeong-Woo;Lee Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

A Study on Polymer Replica Materials for Nanotransfer Printing (패턴전사프린팅용 고분자 복제 소재 연구)

  • Kang, Young Lim;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2021
  • For the past several decades, various next-generation patterning methods have been developed to obtain well-designed nano-to-micro structures, such as imprint lithography, nanotransfer printing (nTP), directed self-assembly (DSA), E-beam lithography, and so on. Especially, nTP process has much attention due to its low processing cost, short processing time, and good compatibility with other patterning techniques in achieving the formation of high-resolution functional patterns. To transfer functional patterns onto desirable substrates, the use of soft materials is required for precise replication of master mold. Here, we introduce a simple and practical nTP method to create highly ordered structures using various polymeric replica materials. We found that polymethyl methacrylate (PMMA), polystyrene (PS), and polyvinylpyridine (PVP) are possible candidates for replica materials for reliable duplication of Si master mold based on systematic analysis of pattern visualization. Furthermore, we successfully obtained well-defined metal and oxide nanostructures with functionality on target substrates by using replica patterns, through deposition and transfer process. We expect that the several candidates of replica materials can be exploited for effective nanofabrication of complex electronic devices.

Patterning of liquid crystal alignment layers using selective dewetting process in a thermoplastic polymer film

  • Kim, Hak-Rin;Shin, Min-Soo;Lee, You-Jin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1719-1722
    • /
    • 2006
  • We proposed a soft-lithographic method for aligning a liquid crystal (LC) in patterned azimuthal orientations. It is demonstrated that a thermoplastic polystyrene layer is patterned from a thermally stable polyimide layer via pressure-assisted capillary force lithography, which provides multidirectional LC alignment condition simply followed by a unidirectional rubbing process.

  • PDF

Gate dielectric based on organic-inorganic hybrid polymer in organic thin-film transistors

  • Lee, Seong-Hui;Jeong, Sun-Ho;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.727-729
    • /
    • 2007
  • Inorganic-organic hybrid polymer provides various advantages including low-temperature process, high dielectric constant and direct photo-patterning. The hybrid dielectric was synthesized by the sol-gel process in which an acid-catalyzed solution of Si alkoxide and Zr alkoxide was used as a precursor. The electrical performance of transistors with hybrid dielectric was investigated.

  • PDF

Flow Behaviors of Polymers in Micro Hot Embossing Process (미세 핫엠보싱 공정에서 폴리머의 유동특성)

  • Ban Jun Ho;Shin Jai Ku;Kim Byeong Hee;Kim Heon Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

Study of nano patterning rheology in hot embossing process (핫엠보싱 공정에서의 미세 패턴 성형에 관한 연구)

  • Kim, H.;Kim, K.S.;Kim, H.Y.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process, simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during Compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

Pore Distribution of Porous Silicon layer by Anodization Process

  • Lee, Ki-Yong;Chung, Won-Yong;Kim, Do-Hyun
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.494-496
    • /
    • 1996
  • The purpose of this study is to investigate the effect of process conditions on pore distribution in porous silicon layer prepared by electrochemical reaction. Porous silicon layers formed on p-type silicon wafer show the network structure of fine porse whose diameters are less than 100${\AA}$. In n-type porous silicon, selective growth was found on the pore surface by wet etching process after PR patterning. And numerical method showed high current density on the pore tip. With this result we confirmed that pore formation has two steps. First step is the initial attack on the surface and second step is the directional growth on the pore tip.

  • PDF

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF

A Study on the Argon Laser Assisted Thermochemical Micro Etching (레이저를 이용한 미세에칭에 관한 연구)

  • 박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.844-847
    • /
    • 2001
  • The application of laser direct etching has been discussed, and believed that the process is a very powerful method for micro machining. This study is focused on the micro patterning technology using laser direct etching process with no chemical damage of the material surface. A new introduced concept of energy synergy effect for surface micro machining is the combination of chemically ion reaction and laser thermal process. The etchant can't etch the material in room temperature, and used Ar laser has not power enough to machine. But, the machining is occurred in local area of the material by the combined energy. Using this process, the material is especially prevented from chemical damage for electric property. We have tested this new concept, and achieved a line with $1{mu}m$ width. The Ar laser with 488nm wavelength was used. The material was Si(100) wafer, and etchant is KOH solution. The application and flexibility of this process is in great hopes for MEMS structures and fabrication of the micro electric device parts.

  • PDF

Gold Stripe Optical Waveguides Fabricated by a Novel Double-Layered Liftoff Process

  • Kim, Jin-Tae;Park, Sun-Tak;Park, Seung-Koo;Kim, Min-Su;Lee, Myung-Hyun;Ju, Jung-Jin
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.778-783
    • /
    • 2009
  • To fabricate uniform and reliable thin gold stripes that provide low-loss optical waveguides, we developed a novel liftoff process placing an additional $SiN_x$ layer under conventional photoresists. By patterning a photoresist and over-etching the $SiN_x$, the photoresist patterns become free-standing structures on a lower-cladding. This leads to uniform metal stripes with good reproducibility and effectively removes parasitic structures on the edge of the metal stripe in the image reversal photolithography process. By applying the newly developed process to polymer-based gold stripe waveguide fabrication, we improved the propagation losses about two times compared with that incurred by the conventional image-reversal process.