• Title/Summary/Keyword: patterned micro-structure

Search Result 44, Processing Time 0.019 seconds

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array (PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터)

  • Lee, Min-Seon;Na, Yong-Hyeon;Park, Jin-Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.

Durability Improvement of Functional Polymer Film by Heat Treatment and Micro/nano Hierarchical Structure for Display Applications (열처리와 복합구조화를 통한 디스플레이용 기능성 고분자 필름의 내구성 향상 연구)

  • Yeo, N.E.;Cho, W.K.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.47-52
    • /
    • 2018
  • In this study, the effects of the heat treatment and multi-scale hierarchical structures on the durability of the nano-patterned functional PMMA(Poly(methyl-methacrylate)) film was evaluated. The heat treatments that consisted of high-pressure/high-temperature flat pressing and rapid cooling process were employed to improve mechanical property of the PMMA films. Multi-scale hierarchical structures were fabricated by thermal nanoimprint to protect nano-scale structures from the scratch. Examination on surface structures and functionalities such as wetting angle and transmittance revealed that the preopposed heat treatment and multi-scale hierarchical structures are effective to minimize surface damages.

Hybrid Fabrication of Screen-printed Pb(Zr,Ti)O3 Thick Films Using a Sol-infiltration and Photosensitive Direct-patterning Technique (졸-침투와 감광성 직접-패턴 기술을 이용하여 스크린인쇄된 Pb(Zr,Ti)O3 후막의 하이브리드 제작)

  • Lee, J.-H.;Kim, T.S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.83-89
    • /
    • 2015
  • In this paper, we propose a fabrication technique for enhanced electrical properties of piezoelectric thick films with excellent patterning property using sol-infiltration and a direct-patterning process. To achieve the needs of high-density and direct-patterning at a low sintering temperature (< $850^{\circ}C$), a photosensitive lead zirconate titanate (PZT) solution was infiltrated into a screen-printed thick film. The direct-patterned PZT films were clearly formed on a locally screen-printed thick film, using a photomask and UV light. Because UV light is scattered in the screen-printed thick film of a porous powder-based structure, there are needs to optimize the photosensitive PZT sol infiltration process for obtaining the enhanced properties of PZT thick film. By optimizing the concentration of the photosensitive PZT sol, UV irradiation time, and solvent developing time, the hybrid films prepared with 0.35 M of PZT sol, 4 min of UV irradiation and 15 sec solvent developing time, showed a very dense with a large grain size at a low sintering temperature of $800^{\circ}C$. It also illustrated enhanced electrical properties (remnant polarization, $P_r$, and coercive field, $E_c$). The $P_r$ value was over four times higher than those of the screen-printed films. These films integrated on silicon wafer substrate could give a potential of applications in micro-sensors and -actuators.

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.