• 제목/요약/키워드: pattern recognition neural network

검색결과 489건 처리시간 0.029초

Improve Digit Recognition Capability of Backpropagation Neural Networks by Enhancing Image Preprocessing Technique

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.4-49
    • /
    • 2001
  • Digit recognition based on backpropagation neural networks, as an important application of pattern recognition, was attracted much attention. Although it has the advantages of parallel calculation, high error-tolerance, and learning capability, better recognition effects can only be achieved with some specific fixed format input of the digit image. Therefore, digit image preprocessing ability directly affects the accuracy of recognition. Here using Matlab software, the digit image was enhanced by resizing and neutral-rotating the extracted digit image, which improved the digit recognition capability of the backpropagation neural network under practical conditions. This method may also be helpful for recognition of other patterns with backpropagation neural networks.

  • PDF

인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구 (A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network)

  • 김원일;이윤경;왕덕현;강재관;김병창;이관철;정인룡
    • 한국기계가공학회지
    • /
    • 제4권3호
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF

신경회로망과 기억이론에 기반한 한글영상 인식과 복원 (The Hangeul image's recognition and restoration based on Neural Network and Memory Theory)

  • 장재혁;박중양;박재홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.17-27
    • /
    • 2005
  • 본 논문에서는 문자인식과 복원을 위한 신경회로망 시스템을 제안한다. 제안하는 시스템은 인식부와 연상부로 구성되었다. 인식부에서는 ART 신경회로망의 인식성능을 개선하기 위해 불필요한 하향틀의 생성과 변화를 제한하여 효과적인 패턴인식이 가능한 모델을 제안하였다. 또한, 한글의 구조적인 특징을 능동적으로 적용할 수 있게 구성된 위치특징 추출 알고리즘을 적용하였다. 연상부에서는 Hopfield 신경회로망으로, 입력된 이미지 패턴의 복원이 가능한 모델을 구성하였다. 제안하는 시스템은 그 성능을 확인하기 위해 각 부분별 실험을 하였다. 그 결과 인식율이 개선되고 복원이 가능함을 보였다.

  • PDF

인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산 (3D Object Recognition and Accurate Pose Calculation Using a Neural Network)

  • 박강
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.

Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식 (Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network)

  • 윤재준;박정술;김준석;백준걸
    • 한국시뮬레이션학회논문지
    • /
    • 제20권4호
    • /
    • pp.115-125
    • /
    • 2011
  • 제품의 품질 수준 제고를 위해 통계적 공정 관리(SPC : Statistical Process Control)의 다양한 관리도가 기업의 생산 공정을 관리하는데 사용된다. 관리도에 기록되는 공정 데이터는 특정 요인(Assignable Cause)에 의한 이상이 발생했을 때 그 요인에 따라 서로 다른 패턴(Pattern)으로 변화한다. 이러한 패턴을 구별하는 관리도 패턴(CCP : Control Chart Pattern) 인식(Recognition)은 공정에 대한 관리자의 빠른 의사 결정을 위해 매우 중요하다. 앞 선 연구들은 수집되는 원 데이터를 가공 하지않고 그대로 사용하였기 때문에 인식기(Recognizer)의 성능과 학습 속도가 저하되는 문제점이 있었다. 따라서 최근 데이터의 차원 축소와 인식기의 성능 향상을 위해 특질 추출법(Feature Extraction)을 적용한 특질 기반 인식기(Feature based Recognizer)에 대한 연구가 활발히 진행 중이다. 본 논문은 BDK(Bi-Directional Kohonen Network)를 사용하여 CCP의 참조 벡터(Reference Vector)를 생성하고 참조 벡터와 CCP 데이터의 거리를 기반으로 하는 특질을 추출하였다. 추출된 특질을 인공 신경망 기반 인식기의 입력 벡터로 사용하여 학습하였으며 원 데이터를 사용하여 학습하는 인공신경망 인식기와 예측 정확도 비교를 통해 제안 알고리즘의 성능을 평가하였다.

A Study on the Pattern Recognition Rate of Partial Discharge in GIS using an Artificial Neural Network

  • Kang Yoon-Sik;Lee Chang-Joon;Kang Won-Jong;Lee Hee-Cheol;Park Jong-Wha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권2호
    • /
    • pp.63-66
    • /
    • 2005
  • This paper describes analysis and pattern recognition techniques for Partial Discharge(PD) signals in Gas Insulated Switchgears (GIS). Detection of PD signals is one of the most important factors in the predictive maintenance of GIS. One of the methods of detection is electro magnetic wave detection within the Ultra High Frequency (UHF) band (300MHz $\~$ 3GHz). In this paper, PD activity simulation is generated using three types of artificial defects, which were detected by a UHF PD sensor installed in the GIS. The detected PD signals were performed on three-dimensional phi-q-n analysis. Finally, parameters were calculated and an Artificial Neural Network (ANN) was applied for PD pattern recognition. As a result, it was possible to discriminate and classify the defects.

RAM 기반 신경망을 이용한 필기체 숫자 분류 연구 (A Study on Handwritten Digit Categorization of RAM-based Neural Network)

  • 박상무;강만모;엄성훈
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-207
    • /
    • 2012
  • RAM 기반 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는(weightless) 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. 지도 학습에 기반을 둔 RAM 기반 신경망은 패턴 인식 분야에는 우수한 성능을 보이는 반면, 비지도 학습에 의해 패턴을 구분해야 하는 범주화 연구에는 적합하지 않은 모델로 분류된다. 본 논문에서는 비지도 학습 알고리즘을 제안하여 RAM 기반 신경망으로 패턴 범주화를 수행한다. 제안된 비지도 학습 알고리즘에 의해 RAM 기반 신경망은 입력 패턴에 따라 자율 학습하여 스스로 범주를 생성할 수 있으며, 이를 통해 RAM 기반 신경망이 지도 학습과 비지도 학습이 모두 가능한 복합 모델임을 증명한다. 실험에 사용한 학습 패턴으로는 0에서 9까지의 오프라인 필기체 숫자로 구성된 MNIST 데이터베이스를 사용하였다.

인공신경망을 이용하여 하드웨어 다중 센서 신호 검증을 위한 패리티 공간 및 패턴인식 방법 (Parity Space and Pattern Recognition Approach for Hardware Redundant System Signal Validation using Artificial Neural Networks)

  • 윤태섭
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.765-771
    • /
    • 1998
  • An artificial neural network(NN) technique is developed for hardware redundant sensor validation. Since the measurement space is a continuous space with many operating regions, it is difficult to train a NN to correctly detect failure in an accurate measurement system. A conventional backpropagation NN is modified to include an additional preprocessing layer that extracts classification features from scalar measurements. This feature extraction means transform the measurement space to parity space. The NN is independent of the state variable being measured, the instrument range, and the signal tolerance. This NN resembles the parity space approach to signal validation, except that analytical parity equations are unneeded and the NN pattern recognition capability is utilized for decision making.

  • PDF

Convolutional Neural Network Based Image Processing System

  • Kim, Hankil;Kim, Jinyoung;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.160-165
    • /
    • 2018
  • This paper designed and developed the image processing system of integrating feature extraction and matching by using convolutional neural network (CNN), rather than relying on the simple method of processing feature extraction and matching separately in the image processing of conventional image recognition system. To implement it, the proposed system enables CNN to operate and analyze the performance of conventional image processing system. This system extracts the features of an image using CNN and then learns them by the neural network. The proposed system showed 84% accuracy of recognition. The proposed system is a model of recognizing learned images by deep learning. Therefore, it can run in batch and work easily under any platform (including embedded platform) that can read all kinds of files anytime. Also, it does not require the implementing of feature extraction algorithm and matching algorithm therefore it can save time and it is efficient. As a result, it can be widely used as an image recognition program.

축합조건의 분석을 통한 Langevine 경쟁 학습 신경회로망의 대역 최소화 근사 해석과 필기체 숫자 인식에 관한 연구 (A study of global minimization analaysis of Langevine competitive learning neural network based on constraction condition and its application to recognition for the handwritten numeral)

  • 석진욱;조성원;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.466-469
    • /
    • 1996
  • In this paper, we present the global minimization condition by an informal analysis of the Langevine competitive learning neural network. From the viewpoint of the stochastic process, it is important that competitive learning guarantees an optimal solution for pattern recognition. By analysis of the Fokker-Plank equation for the proposed neural network, we show that if an energy function has a special pseudo-convexity, Langevine competitive learning can find the global minima. Experimental results for pattern recognition of handwritten numeral data indicate the superiority of the proposed algorithm.

  • PDF