• Title/Summary/Keyword: pattern recognition analysis

Search Result 677, Processing Time 0.025 seconds

For Gene Disease Analysis using Data Mining Implement MKSV System (데이터마이닝을 활용한 유전자 질병 분석을 위한 MKSV시스템 구현)

  • Jeong, Yu-Jeong;Choi, Kwang-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.781-786
    • /
    • 2019
  • We should give a realistic value on the large amounts of relevant data obtained from these studies to achieve effective objectives of the disease study which is dealing with various vital phenomenon today. In this paper, the proposed MKSV algorithm is estimated by optimal probability distribution, and the input pattern is determined. After classifying it into data mining, it is possible to obtain efficient computational quantity and recognition rate. MKSV algorithm is useful for studying the relationship between disease and gene in the present society by simulating the probabilistic flow of gene data and showing fast and effective performance improvement to classify data through the data mining process of big data.

K-Means Clustering in the PCA Subspace using an Unified Measure (통합 측도를 사용한 주성분해석 부공간에서의 k-평균 군집화 방법)

  • Yoo, Jae-Hung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.703-708
    • /
    • 2022
  • K-means clustering is a representative clustering technique. However, there is a limitation in not being able to integrate the performance evaluation scale and the method of determining the minimum number of clusters. In this paper, a method for numerically determining the minimum number of clusters is introduced. The explained variance is presented as an integrated measure. We propose that the k-means clustering method should be performed in the subspace of the PCA in order to simultaneously satisfy the minimum number of clusters and the threshold of the explained variance. It aims to present an explanation in principle why principal component analysis and k-means clustering are sequentially performed in pattern recognition and machine learning.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

Effective Line Detection of Steel Plates Using Eigenvalue Analysis (고유값 분석을 이용한 효과적인 후판의 직선 검출)

  • Park, Sang-Hyun;Kim, Jong-Ho;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1479-1486
    • /
    • 2011
  • In this paper, a simple and robust algorithm is proposed for detecting straight line segments in a steel plate image. Line detection from a steel plate image is a fundamental task for analyzing and understanding of the image. The proposed algorithm is based on small eigenvalue analysis. The proposed approach scans an input edge image from the top left comer to the bottom right comer with a moving mask. A covariance matrix of a set of edge pixels over a connected region within the mask is determined and then the statistical and geometrical properties of the small eigenvalue of the matrix are explored for the purpose of straight line detection. Before calculating the eigenvalue, each line segment is separated from the edge image where several line segments are overlapped to increase the accuracy of the line detection. Additionally, unnecessary line segments are eliminated by the number of pixels and the directional information of the detected line edges. The respects of the experiments emphasize that the proposed algorithm outperforms the existing algorithm which uses small eigenvalue analysis.

Chemometric Aspects and Determination of Sugar Composition of Honey by HPLC (HPLC에 의한 꿀 중의 당조성 분석과 화학계량학적 고찰)

  • Yoon, Jung-Hyeon;Bae, Sun-Young;Kim, Kun;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.362-369
    • /
    • 1997
  • Chemometric technique was applied to the sugar composition in five honeys of known botanical or geographical origin following HPLC. Fructose and glucose were predominant carbohydrates in honeys, and small amount of sucrose was also detected in one sample. Sugar contents in honeys samples were compared by the geographical or botanical origin. Fructose/glucose ratio ranged from 0.99 to 1.55 was obtained and these results are in good agreement with the ratio of literature. The plot of principal components analysis(PCA) showed that different honey samples grouped into distinct cluster by the geographical or botanical origin. Increasing the first or second principal component score, higher amount of sugar or less fructose/glucose ratio was observed in PCA plot. Chemometric approach was very useful to provide pattern recognition of sugar profile or quality indices of honey sample and to detect adulteration.

  • PDF

Study on the Development of Auto-classification Algorithm for Ginseng Seedling using SVM (Support Vector Machine) (SVM(Support Vector Machine)을 이용한 묘삼 자동등급 판정 알고리즘 개발에 관한 연구)

  • Oh, Hyun-Keun;Lee, Hoon-Soo;Chung, Sun-Ok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Image analysis algorithm for the quality evaluation of ginseng seedling was investigated. The images of ginseng seedling were acquired with a color CCD camera and processed with the image analysis methods, such as binary conversion, labeling, and thinning. The processed images were used to calculate the length and weight of ginseng seedlings. The length and weight of the samples could be predicted with standard errors of 0.343 mm, and 0.0214 g respectively, $R^2$ values of 0.8738 and 0.9835 respectively. For the evaluation of the three quality grades of Gab, Eul, and abnormal ginseng seedlings, features from the processed images were extracted. The features combined with the ratio of the lengths and areas of the ginseng seedlings efficiently differentiate the abnormal shapes from the normal ones of the samples. The grade levels were evaluated with an efficient pattern recognition method of support vector machine analysis. The quality grade of ginseng seedling could be evaluated with an accuracy of 95% and 97% for training and validation, respectively. The result indicates that color image analysis with support vector machine algorithm has good potential to be used for the development of an automatic sorting system for ginseng seedling.

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

An Optimal Cluster Analysis Method with Fuzzy Performance Measures (퍼지 성능 측정자를 결합한 최적 클러스터 분석방법)

  • 이현숙;오경환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.81-88
    • /
    • 1996
  • Cluster analysis is based on partitioning a collection of data points into a number of clusters, where the data points in side a cluster have a certain degree of similarity and it is a fundamental process of data analysis. So, it has been playing an important role in solving many problems in pattern recognition and image processing. For these many clustering algorithms depending on distance criteria have been developed and fuzzy set theory has been introduced to reflect the description of real data, where boundaries might be fuzzy. If fuzzy cluster analysis is tomake a significant contribution to engineering applications, much more attention must be paid to fundamental questions of cluster validity problem which is how well it has identified the structure that is present in the data. Several validity functionals such as partition coefficient, claasification entropy and proportion exponent, have been used for measuring validity mathematically. But the issue of cluster validity involves complex aspects, it is difficult to measure it with one measuring function as the conventional study. In this paper, we propose four performance indices and the way to measure the quality of clustering formed by given learning strategy.

  • PDF

Discriminant Analysis of Human's Implicit Intent based on Eyeball Movement (안구운동 기반의 사용자 묵시적 의도 판별 분석 모델)

  • Jang, Young-Min;Mallipeddi, Rammohan;Kim, Cheol-Su;Lee, Minho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.212-220
    • /
    • 2013
  • Recently, there has been tremendous increase in human-computer/machine interaction system, where the goal is to provide with an appropriate service to the user at the right time with minimal human inputs for human augmented cognition system. To develop an efficient human augmented cognition system based on human computer/machine interaction, it is important to interpret the user's implicit intention, which is vague, in addition to the explicit intention. According to cognitive visual-motor theory, human eye movements and pupillary responses are rich sources of information about human intention and behavior. In this paper, we propose a novel approach for the identification of human implicit visual search intention based on eye movement pattern and pupillary analysis such as pupil size, gradient of pupil size variation, fixation length/count for the area of interest. The proposed model identifies the human's implicit intention into three types such as navigational intent generation, informational intent generation, and informational intent disappearance. Navigational intent refers to the search to find something interesting in an input scene with no specific instructions, while informational intent refers to the search to find a particular target object at a specific location in the input scene. In the present study, based on the human eye movement pattern and pupillary analysis, we used a hierarchical support vector machine which can detect the transitions between the different implicit intents - navigational intent generation to informational intent generation and informational intent disappearance.

Analysis of Dietary Characteristics of Participants Attending the Nutrition Education Program for Hypertensive Patients at a Public Health Center (보건소 고혈압 영양교육 참여자의 식생활 요인 분석)

  • Im, Gyeong-Suk;Han, Mun-Hwa;Gang, Yong-Hwa;Park, Hyei-Ryeon;Kim, Chan-Ho
    • Journal of the Korean Dietetic Association
    • /
    • v.6 no.2
    • /
    • pp.125-135
    • /
    • 2000
  • Hypertension is a well-known degenerative disease whose prevalence rate increases with age. Management of high blood pressure is a critical concern in preventive strategies to reduce the morbidity and mortality for cardiovascular disease. The purpose of this study was to examine the dietary characteristics of hypertensive program participants, and to establish strategies based on their nutritional needs. Hypertensive patients were enrolled in the program in a public health center or in a local elderly center, at Suwon, in 1999-2000. Trained dietitians interviewed 62 enrollees(24-hour recall) and related variables. Mean body mass index of the subjects was 25.0kg/m². 30.7% of the subjects had a family history of hypertension. The majority of them ate regularly and partook of all available side dishes. They consumed grains and vegetables regularly, but seldom ate dairy products or food prepared with oil. Male enrollees frequently consumed more processed food and animal fat than did female enrollees(p<0.05). An analysis of the percentage of RDA(Recommended Dietary Allowances of Korea 1995) showed that but for ascorbic acid, enrollees consumed nutrients below the RDA. The food group intake pattern was not diverse, thus only 8.1% of enrollees consumed all food groups in a day. An analysis of eating attitude showed that 64.5% of enrollees always added salt to beef soup. Male enrollees showed low food-related self-efficacy compared to female enrollees, especially with reference to reduction of instant food intake(p<0.01), increase in vegetable intake(p<0.01), reduction of monosodium glutamate(MSG) intake(p<0.01). and not overeating(p<0.05). Their perceived barriers for participating in hypertension nutrition programs included lack of time, program necessity non-recognition, and program comprehension difficulty. These results suggest that nutrition education program necessity non-recognition, and program comprehension difficulty. These results suggest that nutrition education programs for community hypertensive patients should focus on increasing participant consumption of foods, expecially dairy products, and desirable eating attitudes. It also suggests that the program should consider should consider encouraging self-efficacy in changing eating behavior.

  • PDF