• Title/Summary/Keyword: pattern mining

Search Result 624, Processing Time 0.025 seconds

WIS: Weighted Interesting Sequential Pattern Mining with a Similar Level of Support and/or Weight

  • Yun, Un-Il
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.336-352
    • /
    • 2007
  • Sequential pattern mining has become an essential task with broad applications. Most sequential pattern mining algorithms use a minimum support threshold to prune the combinatorial search space. This strategy provides basic pruning; however, it cannot mine correlated sequential patterns with similar support and/or weight levels. If the minimum support is low, many spurious patterns having items with different support levels are found; if the minimum support is high, meaningful sequential patterns with low support levels may be missed. We present a new algorithm, weighted interesting sequential (WIS) pattern mining based on a pattern growth method in which new measures, sequential s-confidence and w-confidence, are suggested. Using these measures, weighted interesting sequential patterns with similar levels of support and/or weight are mined. The WIS algorithm gives a balance between the measures of support and weight, and considers correlation between items within sequential patterns. A performance analysis shows that WIS is efficient and scalable in weighted sequential pattern mining.

  • PDF

Recent Technique Analysis, Infant Commodity Pattern Analysis Scenario and Performance Analysis of Incremental Weighted Maximal Representative Pattern Mining (점진적 가중화 맥시멀 대표 패턴 마이닝의 최신 기법 분석, 유아들의 물품 패턴 분석 시나리오 및 성능 분석)

  • Yun, Unil;Yun, Eunmi
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.39-48
    • /
    • 2020
  • Data mining techniques have been suggested to find efficiently meaningful and useful information. Especially, in the big data environments, as data becomes accumulated in several applications, related pattern mining methods have been proposed. Recently, instead of analyzing not only static data stored already in files or databases, mining dynamic data incrementally generated in a real time is considered as more interesting research areas because these dynamic data can be only one time read. With this reason, researches of how these dynamic data are mined efficiently have been studied. Moreover, approaches of mining representative patterns such as maximal pattern mining have been proposed since a huge number of result patterns as mining results are generated. As another issue, to discover more meaningful patterns in real world, weights of items in weighted pattern mining have been used, In real situation, profits, costs, and so on of items can be utilized as weights. In this paper, we analyzed weighted maximal pattern mining approaches for data generated incrementally. Maximal representative pattern mining techniques, and incremental pattern mining methods. And then, the application scenarios for analyzing the required commodity patterns in infants are presented by applying weighting representative pattern mining. Furthermore, the performance of state-of-the-art algorithms have been evaluated. As a result, we show that incremental weighted maximal pattern mining technique has better performance than incremental weighted pattern mining and weighted maximal pattern mining.

A Novel Approach for Mining High-Utility Sequential Patterns in Sequence Databases

  • Ahmed, Chowdhury Farhan;Tanbeer, Syed Khairuzzaman;Jeong, Byeong-Soo
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.676-686
    • /
    • 2010
  • Mining sequential patterns is an important research issue in data mining and knowledge discovery with broad applications. However, the existing sequential pattern mining approaches consider only binary frequency values of items in sequences and equal importance/significance values of distinct items. Therefore, they are not applicable to actually represent many real-world scenarios. In this paper, we propose a novel framework for mining high-utility sequential patterns for more real-life applicable information extraction from sequence databases with non-binary frequency values of items in sequences and different importance/significance values for distinct items. Moreover, for mining high-utility sequential patterns, we propose two new algorithms: UtilityLevel is a high-utility sequential pattern mining with a level-wise candidate generation approach, and UtilitySpan is a high-utility sequential pattern mining with a pattern growth approach. Extensive performance analyses show that our algorithms are very efficient and scalable for mining high-utility sequential patterns.

Continuous Moving Pattern Mining Approach in LBS Platform

  • LEE, J.W.;Heo, T.W.;Kim, K.S.;Lee, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.597-599
    • /
    • 2003
  • Moving pattern is as a kind of sequential pattern, which can be extracted from the large volume of location history data. This sort of knowledge is very useful in supporting intelligence to the LBS or GIS. In this paper, we proposed the continuous moving pattern mining approach in LBS platform and LBS Miner. The location updates of moving objects affect the set of the rules maintained. In our approach, we use the validity thresholds that indicate the next time to invoke the incremental pattern mining. The mining system will play a major role in supporting the various LBS solutions.

  • PDF

A Process Mining using Association Rule and Sequence Pattern (연관규칙과 순차패턴을 이용한 프로세스 마이닝)

  • Chung, So-Young;Kwon, Soo-Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

PPFP(Push and Pop Frequent Pattern Mining): A Novel Frequent Pattern Mining Method for Bigdata Frequent Pattern Mining (PPFP(Push and Pop Frequent Pattern Mining): 빅데이터 패턴 분석을 위한 새로운 빈발 패턴 마이닝 방법)

  • Lee, Jung-Hun;Min, Youn-A
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.623-634
    • /
    • 2016
  • Most of existing frequent pattern mining methods address time efficiency and greatly rely on the primary memory. However, in the era of big data, the size of real-world databases to mined is exponentially increasing, and hence the primary memory is not sufficient enough to mine for frequent patterns from large real-world data sets. To solve this problem, there are some researches for frequent pattern mining method based on disk, but the processing time compared to the memory based methods took very time consuming. There are some researches to improve scalability of frequent pattern mining, but their processes are very time consuming compare to the memory based methods. In this paper, we present PPFP as a novel disk-based approach for mining frequent itemset from big data; and hence we reduced the main memory size bottleneck. PPFP algorithm is based on FP-growth method which is one of the most popular and efficient frequent pattern mining approaches. The mining with PPFP consists of two setps. (1) Constructing an IFP-tree: After construct FP-tree, we assign index number for each node in FP-tree with novel index numbering method, and then insert the indexed FP-tree (IFP-tree) into disk as IFP-table. (2) Mining frequent patterns with PPFP: Mine frequent patterns by expending patterns using stack based PUSH-POP method (PPFP method). Through this new approach, by using a very small amount of memory for recursive and time consuming operation in mining process, we improved the scalability and time efficiency of the frequent pattern mining. And the reported test results demonstrate them.

Sequential Pattern Mining with Optimization Calling MapReduce Function on MapReduce Framework (맵리듀스 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 기법)

  • Kim, Jin-Hyun;Shim, Kyu-Seok
    • The KIPS Transactions:PartD
    • /
    • v.18D no.2
    • /
    • pp.81-88
    • /
    • 2011
  • Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer's purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining (대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가)

  • Lee, Gang-In;Yun, Un-Il
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Frequent pattern mining, which is one of the major areas actively studied in data mining, is a method for extracting useful pattern information hidden from large data sets or databases. Moreover, frequent pattern mining approaches have been actively employed in a variety of application fields because the results obtained from them can allow us to analyze various, important characteristics within databases more easily and automatically. However, traditional frequent pattern mining methods, which simply extract all of the possible frequent patterns such that each of their support values is not smaller than a user-given minimum support threshold, have the following problems. First, traditional approaches have to generate a numerous number of patterns according to the features of a given database and the degree of threshold settings, and the number can also increase in geometrical progression. In addition, such works also cause waste of runtime and memory resources. Furthermore, the pattern results excessively generated from the methods also lead to troubles of pattern analysis for the mining results. In order to solve such issues of previous traditional frequent pattern mining approaches, the concept of representative pattern mining and its various related works have been proposed. In contrast to the traditional ones that find all the possible frequent patterns from databases, representative pattern mining approaches selectively extract a smaller number of patterns that represent general frequent patterns. In this paper, we describe details and characteristics of pattern condensing techniques that consider the maximality or closure property of generated frequent patterns, and conduct comparison and analysis for the techniques. Given a frequent pattern, satisfying the maximality for the pattern signifies that all of the possible super sets of the pattern must have smaller support values than a user-specific minimum support threshold; meanwhile, satisfying the closure property for the pattern means that there is no superset of which the support is equal to that of the pattern with respect to all the possible super sets. By mining maximal frequent patterns or closed frequent ones, we can achieve effective pattern compression and also perform mining operations with much smaller time and space resources. In addition, compressed patterns can be converted into the original frequent pattern forms again if necessary; especially, the closed frequent pattern notation has the ability to convert representative patterns into the original ones again without any information loss. That is, we can obtain a complete set of original frequent patterns from closed frequent ones. Although the maximal frequent pattern notation does not guarantee a complete recovery rate in the process of pattern conversion, it has an advantage that can extract a smaller number of representative patterns more quickly compared to the closed frequent pattern notation. In this paper, we show the performance results and characteristics of the aforementioned techniques in terms of pattern generation, runtime, and memory usage by conducting performance evaluation with respect to various real data sets collected from the real world. For more exact comparison, we also employ the algorithms implementing these techniques on the same platform and Implementation level.