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Mining sequential patterns is an important research 
issue in data mining and knowledge discovery with broad 
applications. However, the existing sequential pattern 
mining approaches consider only binary frequency values 
of items in sequences and equal importance/significance 
values of distinct items. Therefore, they are not applicable 
to actually represent many real-world scenarios. In this 
paper, we propose a novel framework for mining high- 
utility sequential patterns for more real-life applicable 
information extraction from sequence databases with non-
binary frequency values of items in sequences and 
different importance/significance values for distinct items. 
Moreover, for mining high-utility sequential patterns, we 
propose two new algorithms: UtilityLevel is a high-utility 
sequential pattern mining with a level-wise candidate 
generation approach, and UtilitySpan is a high-utility 
sequential pattern mining with a pattern growth approach. 
Extensive performance analyses show that our algorithms 
are very efficient and scalable for mining high-utility 
sequential patterns. 
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I. Introduction 

Sequential pattern mining [1]-[6] discovers frequent 
sequences from a sequence database (SDB). By maintaining 
the order of elements in a sequence, it can discover crucial 
knowledge from SDBs. For example, after buying a TV, user X 
has bought a DVD player within one week. After traversing 
web page W1, user Y has traversed web page W2. Therefore, 
sequential pattern mining becomes important in many real-life 
application domains such as market basket data analysis, web 
usage mining, biomedical gene data analysis for detecting a 
disease and producing a drug, telecommunication data analysis, 
stock market, and weather trend prediction. 

Even though sequential pattern mining plays an important 
role in data mining applications, the existing sequential pattern 
mining algorithms [1]-[7] consider only binary frequency 
values of items in sequences and equal importance/significance 
values of distinct items. Moreover, they use support measures 
to detect whether a sequence is frequent or not. The 
support/frequency of a sequence is the number of transaction 
sequences (TSs) containing the sequence in the SDB. The 
problem of sequential pattern mining is to find the complete set 
of sequences satisfying a user-given minimum support 
threshold in the SDB. However, this assumption cannot truly 
represent many real-life scenarios. For example, in a retail 
market, each item has a different price/profit value, and a user 
may buy multiple copies of a same item. In a web traversal 
sequence, a user may browse different time units in different 
web pages, and each web page may have a different 
importance/significance. This gives the motivation to design a 
high-utility sequential pattern mining framework for SDBs. 

The existing high-utility pattern (HUP) mining model [8]-
[13] is designed for non-sequential databases, that is, ordinary 
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transaction databases, where the order of elements in a pattern 
is not maintained. The existing model considers non-binary 
frequency values of items in transactions and different profit 
values of items in contrast to the assumption of binary 
frequency values of items in transactions and equal 
importance/significance values of items in the traditional 
frequent pattern mining model [14]-[16]. It uses a measure 
called “utility” to overcome the limitations of the support 
measure. This utility measure calculates the actual profit value 
of a pattern in a transaction database. The problem of HUP 
mining refers to find out those patterns having utility value 
greater than or equal to a user-given minimum threshold with 
respect to the transaction database. By using this measure, very 
important and useful patterns can be discovered which may not 
be possible with the support measure. For example, the support 
measure may not be able to detect a pattern such as gold ring, 
gold necklace because this pattern may have very small 
support value. On the other hand, a utility measure can easily 
discover this pattern because it considers the profit value as 
well as the non-binary frequency value. By utility mining, 
several important business area decisions like maximizing 
revenue, minimizing marketing, and/or inventory costs can be 
considered, and knowledge about itemsets/customers 
contributing to the majority of the profit can be discovered. In 
addition to the real-world retail market, other application areas, 
such as stock tickers, network traffic measurements, web-
server logs, data feeds from sensor networks, and 
telecommunications call records can have similar solutions.  

Motivated by the above real-life scenarios, in this paper, we 
propose a novel framework for mining high-utility sequential 
patterns. Our framework considers both internal and external 
utilities of a sequence and introduces a new measure, sequence 
utility (SeqUtility), to calculate the utility value of a sequence. 
It also defines the high-utility sequential patterns and the 
problem of mining high-utility sequential patterns. Moreover, 
we propose two new algorithms for mining high-utility 
sequential patterns: UtilityLevel (UL) is a high-utility 
sequential pattern mining with a level-wise candidate 
generation approach, and UtilitySpan (US) is a high-utility 
sequential pattern mining with a pattern growth approach. The 
first algorithm, UL, is simple and straightforward compared to 
the second algorithm. However, it adopts a level-wise 
candidate generation-and-test mechanism [1], [2]. Hence, it 
generates a large number of candidate sequences and needs 
several database scans. On the other hand, the second 
algorithm, US, exploits a sequential pattern growth mining 
approach [5], [6] and successfully avoids the problems of the 
UL algorithm. It needs a maximum of three database scans. 
Accordingly, it significantly reduces the number of candidate 
sequences as well as the overall runtime for mining high-utility 

sequential patterns. Extensive performance analyses show that 
our algorithms are very efficient for mining high-utility 
sequential patterns. 

The remainder of this paper is organized as follows. In 
section II, we describe related work. In section III, we propose 
our framework. In section IV, we develop our proposed 
algorithms for mining high-utility sequential patterns. In 
section V, our experimental results are presented and analyzed. 
Finally, in section VI, conclusions are drawn.   

II. Related Work 

1. HUP Mining 

The theoretical model and definitions of HUP mining were 
given in [8]. This approach is called mining with expected 
utility. Later, the same authors proposed two new algorithms, 
UMining and UMining_H, to calculate HUPs [9]. However, 
these methods do not satisfy the “downward closure” property 
of Apriori [14] and overestimate too many patterns. This 
property says that if a pattern is infrequent, then all of its super- 
patterns must be infrequent. The Two-Phase [10] algorithm 
was developed based on the definitions of [8] for HUP mining 
using the downward closure property with a measure called 
“transaction-weighted utilization.” The isolated items 
discarding strategy (IIDS) [12] for discovering HUPs was 
proposed to reduce some candidates in every pass of databases. 
Applying IIDS, the authors developed two efficient HUP 
mining algorithms: FUM and DCG+. However, these 
algorithms suffer from the problem of level-wise candidate 
generation-and-test methodology and need several database 
scans. An efficient candidate pruning technique, HUC-Prune 
[11], has been proposed to avoid the level-wise candidate 
generation-and-test problem in HUP mining. In [13], efficient 
tree structures have been proposed for incremental HUP 
mining. However, these approaches are not applicable for 
mining high-utility sequential patterns.  

2. Sequential Pattern Mining 

The sequential pattern mining problem was first introduced 
by Agrawal and Srikant in [1]. They have designed Apriori-
based algorithms to mine all the sequential patterns according 
to a user-given minimum threshold. Later, an improved 
algorithm, generalized sequential pattern [2], was proposed for 
sequential pattern mining. Zaki [3] devised an algorithm which 
is a sequential pattern discovery using equivalent classes 
(SPADE). SPADE was developed for sequential pattern 
mining using vertical data format. These algorithms are based 
on the level-wise candidate generation-and-testing 
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mechanism and generate too many candidate patterns. The 
SPAM algorithm [4] uses a depth-first search strategy using 
an efficient vertical bitmap representation. An efficient 
algorithm, PrefixSpan [5], [6], was proposed by using a 
sequential pattern growth mining approach. The BIDE 
algorithm [7] can efficiently discover closed sequential 
patterns without candidate maintenance.  

Research has been done for sequential pattern mining with 
constraints. The SPIRIT algorithm [17] has been developed for 
mining sequential patterns with user-specified regular 
expression constraints. Pei and others [18] developed a new 
framework, Prefix-growth, for different types of constraint-
based sequential pattern mining including item, length, super-
pattern, aggregate, regular expression, duration, and gap 
constraints. Some algorithms have also been developed to 
handle weight and quantity constraints in sequential pattern 
mining. The WSpan [19] and WIS [20] algorithms use 
different weight values for different items, but cannot consider 
non-binary frequency values of items. Kim and others [21] 
devised sequential pattern mining with quantities (SQUIRE). 
SQUIRE can consider non-binary frequency values of items. 
Kim and others proposed two algorithms: Apriori-QSP and 
PrefixSpan-QSP. These were created by extending the existing 
Apriori-style and PrefixSpan algorithms of traditional 
sequential pattern mining, respectively. They have also 
proposed two improved versions of these algorithms, Apriori-
All and PrefixSpan-All [21]. However, the SQUIRE approach 
cannot consider items with different weights/profits. Moreover, 
it is based on the support measure. For example, if a sequence 
is {a: 3, b: 2}, then it just finds its support in the SDB, that is, in 
how many TSs it is present. As a consequence, none of the 
existing approaches are capable of mining high-utility 
sequences. Therefore, in this paper, we propose a novel 
framework and two new algorithms for mining high-utility 
sequential patterns in SDBs. 

III. Proposed Framework 

Let I={i1, i2,…, in} be a set of items and P={p1, p2,…, pl} be 
a pattern (itemset), where P⊆I and l∈[1, n]. A sequence S, 
denoted by {s1, s2,…, sr}, is an ordered list of patterns, that is, 
each sq (1 ≤ q ≤ r) is a pattern P, and each pattern appearing in 
a sequence is called an element of the sequence. The length of 
a sequence is the number of instances of items inside it. 
Consider there are two sequences, for example, α={a1 a2…ax} 
and β={b1 b2…by} (x ≤ y). If there exists j1< j2<…< jx ≤ y, such 
that a1⊆ 1jb , a2⊆ 2jb ,…, and ax⊆ xjb , then α is a subsequence 
of β, and β is a super-sequence of α. An SDB contains a 
number of TSs: {TS1, TS2,…, TSm}. TSk (1≤ k ≤ m) contains a  

 

Fig. 1. Examples of (a) sequence database with internal utility and 
(b) external utility table. 
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tuple <SIDk, Sk>, where SIDk is the sequence ID, and Sk is the 
sequence of the TSk. TSk is said to contain a sequence, X, if X is 
a subsequence of Sk.  

Definition 1. The internal utility value of an item, ij, in TSk is 
represented by iu(ij, Sk). External utility eu(ij) is the 
impact/significance value of item ij. Figure 1 shows an 
example SDB with internal and external utility values. Here, 
the internal utility values represent the quantities of items in 
sequences, and the external utility value of each item represents 
profit ($) per unit of that item. For example, in Fig. 1,      
iu(b, S1)=6, and eu(b)=7. However, an item may appear 
multiple times in a TS. In that case, iu(ij, Sk) is the addition of 
all the quantities of ij in sequence Sk. For example, in Fig. 1, 
iu(a, S1)=10.  

Definition 2. Sequence utility, su(ij, Sk), is the quantitative 
measure of utility for item ij in TSk, defined by 

    su(ij, Sk)=iu(ij, Sk)×eu(ij).            (1) 

For example, su(b, S1)=6×7=42 in Fig. 1. 
Definition 3. A sequence, for example, X={x1, x2, …, xm}, is 

called an m-sequence, where X⊆Sk, xp⊆I , and 1≤p≤m. To 
calculate the internal utility of an item, ij, in a sequence X 
(X⊆Sk), we have to take only the internal utility of ij in X. For 
example, iu(d, de(ab), S6)=2 (where X=de(ab)). Hence, as with 
an item, a sequence X may have multiple distinct occurrences 
in TSk. Accordingly, for sequence utility of X in Sk, su(X, Sk) is 
defined by  

   su(X, Sk) = ( , , )
k j

j k
X S i X

su i X S
∀ ∈ ∈
∑ ∑ .         (2) 

However, in the above equation, we refer to only all distinct 
occurrences of X. For example, sequence de has two distinct 
occurrences in S6. Hence, su(de, S6)=(2×10+1×6)+(3×10 
+3×6)=26+48=74 in Fig. 1. If multiple distinct occurrences 
cannot be formed, then a sequence is formed by taking the 
maximum su of a sequence. For example, in the S6 sequence, 
eb can be formed by taking the fourth b or the sixth b. Here, the 
fourth item b is taken as it gives the maximum su of eb in S6. 
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Definition 4. The sequence utility of TSk is defined by 
       su(TSk) = ( , ).

j k

j k
i S

su i S
∈
∑             (3) 

For example, su(TS1)=su(a, S1)+su(b, S1)+su(d, S1)+su(f, S1) 
=50+42+30+8=130. 

Definition 5. The sequence utility of a sequence X in an 
SDB is defined by 

      su(X, SDB) =
  

( , ).
k k

k
TS SDB X S

su X S
∈ ⊆
∑ ∑         (4) 

For example, su(a(bd)a, SDB)=su(a(bd)a, TS1)+su(a(bd)a, 
TS4)=102+129=231 in Fig. 1 

Definition 6. The sequence utility value of an SDB is 
defined by 

        su(SDB) = ( ).
k

k
TS SDB

su TS
∈
∑            (5) 

For example, su(SDB)=743 in Fig. 1. 
Definition 7. The minimum sequence utility threshold, δ, is 

given by the percentage of sequence utility value of the 
database. In Fig. 1, if δ is 30% or can be expressed as 0.3, then 
the minimum sequence utility value can be defined as 

       minSeqUtil=δ×su(SDB).           (6) 

Hence, in this example, minSeqUtil=0.3×743=223 in Fig. 1. 
Definition 8. A sequence X is a high-utility sequential pattern 

if su(X) ≥ minSeqUtil. Mining high-utility sequential pattern 
means discovering all the sequences X having criteria su(X) ≥ 
minSeqUtil. For minSeqUtil=223, a(bd)a is a high-utility 
sequential patten as su(a(bd)a)=231. 

The most challenging problem for high-utility sequential 
pattern mining is that sequence utilities do not have the 
downward closure property. Consider minSeqUtil=223 in  
Fig. 1: a is a low-utility sequential pattern as su(a)=135, but its 
super-sequence a(bd)a is a high-utility sequential pattern as 
su(a(bd)a)=231. Therefore, the downward closure property is 
not satisfied. To maintain the downward closure property in 
high-utility sequential pattern mining, we define a new 
measure called sequence-weighted utility (swu). 

Definition 9. The swu value of a sequence X is defined by 
      swu (X) = ( ).

k k

k
X S TS SDB

su TS
⊆ ∧ ∈

∑           (7)  

Definition 10. X is a high-swu sequence if swu(X) ≥ 
minSeqUtil.  

As it is the maximum possible sequence utility value of a 
sequence, the downward closure property can be maintained 
by using this value. For example, swu(g)=su(TS5)=67 in Fig. 1. 
Here, for minSeqUtil=223 in Fig. 1, as swu(g) < minSeqUtil, 
any super-sequence of g cannot be a high-swu sequence and 
obviously cannot be a high-utility sequential pattern. In our 
approach, after finding all the high-swu sequence maintaining 
the downward closure property, we calculate all the high-utility 

sequential patterns form high-swu sequences. 
Lemma 1. The swu value of a sequence X maintains the 

downward closure property. 
Proof. Let X be a high-swu sequence and SDBX is the set of 

sequences containing X. Let Y be a superset of X, then Y cannot 
be present in any sequence where X is absent. Therefore, 
according to definition 9, the maximum swu value of Y is 
swu(X). Accordingly, if swu(X) is less than minSeqUtil, Y 
cannot be a high-swu sequence.                       � 

Lemma 2. For an SDB and minimum sequence utility 
threshold, the set of high-utility sequential patterns (S) is a 
subset of the set of high-swu sequences (WS). 

Proof. Let X be a high-utility sequential pattern. According to 
definitions 5 and 9, su(X) must be less than or equal to swu(X). 
So, if X is a high-utility sequential pattern, it must be a high- 
swu sequence. Hence, X is a member of the set WS and S 
⊆WS.                                           � 

IV. Mining High-Utility Sequential Patterns 

1. UL Algorithm 

Our first proposed algorithm, UL, is simple and 
straightforward. It is used for generating high-utility sequential 
patterns. It adopts a level-wise candidate generation approach 
for mining high-utility sequential patterns. At first, it generates 
the candidates for high-swu sequences, and subsequently 
generates high-swu sequences (actual candidates for high-
utility sequential patterns). Finally, it detects the high-utility 
sequential patterns from high-swu sequences. 

The level-by-level candidate generation-and-testing 
mechanism is shown in Table 1 for the SDB presented in Fig. 1 
and minSeqUtil=30%. In level-1, all the distinct items are 
candidate length-1 high-swu sequences. The UL algorithm 
scans the SDB once to generate all the length-1 high-swu 
sequences. In level-2, 51 candidate high-swu sequences are 
generated as shown in Table 1. For one length-1 high-swu 
sequence, UL generates length-2 candidate sequences by 
joining it with other length-1 high-swu sequences which 
include it. For example, for length-1 candidate sequence a, 
length-2 candidate sequences aa, ab, ac, ad, ae, and af are 
generated. As there are 6 length-1 candidate sequences, a total 
of 6×6=36 length-2 candidate sequences are generated, that is, 
for N distinct items, N2 length-2 sequences containing two 
elements will be generated. On the other hand, a length-1 
candidate sequence joins with others to form length-2 single 
element candidate sequences, such as when sequence a joins b, 
c, d, e, and f to form (ab), (ac), (ad), (ae), and (af). Similarly, 
sequence b joins with c, d, e, and f to form (bc), (bd), (be), and 
(bf). In this way, 5 candidate sequences for a, 4 candidate 
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Table 1. Candidate generation process for UL algorithm. 

Level Candidate high-swu sequences Candidate high-utility seq. pattern (high-swu sequence) with swu values

1 
7 candidates 
a, b, c, d, e, f, g 

6 high-swu sequences 
a: 602, b: 676, c: 226, d: 743, e: 546, f: 271 

2 

51 candidates (14 candidates not appear in SDB at all) 
aa, ab, ac, ad, ae, af 
ba, bb, bc, bd, be, bf 
…………………… 
(ab), (ac), (ad), (ae), (af) 
(bc), (bd), (be), (bf) 
…………………… 

17 high-swu sequences 
aa: 310, ab: 517, ad: 602, ae: 387, ba: 310, bb: 387, bd: 496, be: 461, 
da: 517, db: 387, dd: 337, de: 387, ea: 292, eb: 292, ed: 292, (ab): 602, 
(bd): 310 

3 

70 candidates (25 candidates not appear in SDB at all) 
aaa, aab, aad, aae, a(ab), aba, abb 
…………………… 
(ab)a, (ab)b, (ab)d, (ab)e 
…………………… 

18 high-swu sequences 
aba: 310, abe: 387, ada: 310, adb: 387, ade: 387, a(ab): 310, a(bd): 310, 
bbe: 387, dad: 337, dae: 387, dbe: 387, d(ab): 387, ead: 292, ebd: 292, 
e(ab): 292, (ab)d: 422, (ab)e: 387, (bd)a: 310 

4 
4 candidates 
adbe, a(bd)a, d(ab)e, e(ab)d 

4 high-swu sequences 
adbe: 387, a(bd)a: 310, d(ab)e: 387, e(ab)d: 292 

 

sequences for b, 3 candidate sequences for c, 2 candidate 
sequences for d, and 1 candidate sequence for e are generated. 
Accordingly, a total of 5+4+3+2+1=15 ((6×5)/2)) candidate 
sequences are generated, that is, for N distinct items,    
(N×(N–1))/2 length-2 single-element candidate sequences will 
be generated. Hence, a total of 36+15=51 length-2 candidate 
sequences are generated. The original SDB must be scanned 
once again with all these candidate sequences to detect the 
high-swu sequences. It is noticeable that among the 51 
candidates, 14 candidates, for example, ca, cc, ef, and (ce), do 
not appear in the SDB at all. However, Table 1 also shows that 
17 high-swu sequences (candidate high-utility sequential 
patterns) are generated from these 51 candidates. 

From level-3 to the last level, the UL algorithm generates 
high-swu candidate sequences for k-th level by joining Lk-1 

(high-swu sequences for (k–1)th level) with Lk-1. A sequence X 
joins with another sequence Y if the subsequence obtained by 
dropping the first item of X is the same as the subsequence 
obtained by dropping the last item of Y. The new candidate 
sequence is formed by joining sequence X with the last item of 
Y. The added item becomes a separate element if it was a 
separate element of Y, and otherwise, part of the last element of 
X. For example, length-2 high-swu sequences ab and bd form 
length-3 candidate high-swu sequence abd. On the other hand, 
length-2 high-swu sequences ab and (bd) form length-3 
candidate high-swu sequence a(bd). After generating all the 
candidate high-swu sequences by joining, UL algorithm prunes 
those candidate sequences having at least one subsequence 
which is not a length-(k–1) high-swu sequence. For example, 
after generating length-3 candidate high-swu sequence eae 
from length-2 high-swu sequences ea and ae, it prunes eae as 

its subsequence ee is not a high-swu sequence. However, for 
level-3 of this example, this algorithm generates a total of 70 
candidate sequences after joining and pruning and scans SDB 
again to detect 18 high-swu sequences as shown in Table 1. 
Similarly, it generates length-4 candidate high-swu sequences 
and calculates 4 high-swu sequences. No candidate high-swu 
sequence is generated for level-5. Finally, it scans the SDB 
with these high-utility-swu sequences to discover the high-
utility sequential patterns. As a consequence, the UL algorithm 
discovers a total of 6 high-utility sequential patterns <b: 266, 
(ab): 239, (ab)d: 238, adbe: 226, a(bd)a: 231, d(ab)e: 250> by 
generating a total of 132 candidates and with five database 
scans.  

2. US Algorithm 

Even though our first proposed algorithm UL can discover 
the final resultant high-utility sequential patterns successfully, it 
suffers from the level-wise candidate generation-and-testing 
problem and hence generates a large number candidate 
sequences. Moreover, its number of database scans is directly 
dependent on the maximum length of candidate sequences. 
Consider the example presented in the last section. It needs a 
total of 5 database scans as the maximum candidate length is 4 
(last scan is needed for detecting high-utility sequential patterns 
from the high-swu sequences). Hence, it needs a total of N+1 
database scans for the maximum candidate length of N. 
Accordingly, it needs several database scans to find the 
resultant sequences. 

To solve the problems of our first approach, in this 
subsection, we propose a second algorithm US. It exploits a 
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Table 2. Candidate generation process for US algorithm. 

Prefix Projected SDB Candidate high-utility seq. pattern (high-swu sequence) with swu values 

a (abd)fad: 130, (_b)dc: 85, (bd)(ab)e: 180, (_b)dbe: 207 

17 high-swu sequences 
a: 602, aa: 310, ab: 517, (ab): 602, ad: 602, ae: 387, a(ab): 310, aba: 310, 
a(bd): 310, abe: 387, a(bd)a: 310, (ab)d: 422, (ab)e: 387, ada: 410,   
adb: 387, ade: 387, adbe: 387 

b (_d)fad: 130, dc: 85, (de): 74, (_d)(ab)e: 180, dbe: 207  8 high-swu sequences 
b: 676, ba: 310, bb: 387, bd: 496, (bd): 310, be: 461, bbe: 387, (bd)a: 310 

c (_f)b(de): 74 1 high-swu sequence      c: 226 

d fad: 130, c: 85, (_e): 74, (ab)e: 180, (_f)c: 67,  
e(ab)dbe: 207  

10 high-swu sequences 
d: 743, da: 517, db: 387, de: 387, dd: 337, dad: 337, d(ab): 387, dae: 387, 
d(ab)e: 387, dbe: 387 

e (ab)dc: 85, (ab)dbe: 207 8 high-swu sequences 
e: 546, ea: 292, eb: 292, ed: 292, e(ab): 292, ead: 292, e(ab)d: 292, ebd: 292

f ad: 130, b(de): 74, c: 67 1 high-swu sequence      f: 271 

 

sequential pattern growth mining approach to avoid the level-
wise candidate generation-and-testing approach. Furthermore, 
its number of database scan is independent on the maximum 
candidate length. It always needs a maximum of three database 
scans. Therefore, it significantly reduces the overall runtime for 
mining high-utility sequential patterns. 

First, the US algorithm scans the SDB once to detect  
length-1 swu sequences. Subsequently, it generates projected 
databases by considering length-1 swu sequences as prefixes 
with a second database scan. Then, using a pattern growth 
approach, it divides the search spaces (projected databases) 
recursively and applies the same technique into them. By 
utilizing this divide-and-conquer method, it generates very few 
candidates compared to the UL algorithm. Note that the US 
algorithm only generates the high-swu sequences without 
generating a large number of intermediate candidate high-swu 
sequences needed by the UL algorithm as shown in Table 2. 

For prefix a, the UL algorithm generates a projected database 
(shown in Table 2). Here, (_b) means that the last item in the 
prefix, which is a, forms one element (ab). However, in the  
a-projected database, we get <a: 310, b: 517, _b: 602, d: 602,  
e: 387, f: 130, and c: 85>. Items c and f cannot form a candidate 
sequence with item a as they have low-swu values (130 and 85, 
respectively) in the a-projected database with respect to the 
minSeqUtil. As a consequence, 6 candidate sequences a: 602, 
aa: 602, ab: 517, (ab): 602, ad: 602, and ae: 387 are generated 
here. Now, according to the divide-and-conquer rule, we apply 
the same technique on the projected databases of aa, ab, (ab), 
ad, and ae. The aa-projected database contains {(_bd) fad: 130, 
(_b)e: 180}, and we get <a: 130, _b: 310, d: 130, f: 130,     
e: 180>. So, only one candidate sequence, a(ab): 310, is 
generated. The ab-projected database contains {(_d)fad: 130, 
(_d)(ab)e: 180, e: 207}, and we get <a: 310, b: 180, d: 130,  

_d: 310, e: 387, f: 130>. Candidate sequences aba: 310,  
a(bd): 310, and abe: 387 are generated here. Similarly, the 
other candidate sequences are generated. Table 2 shows that a 
total of 17 candidate sequences are generated by prefix-a. It 
also shows the other candidate sequences generated by other 
prefix items. However, as mentioned earlier, the US algorithm 
only generates the high-swu sequences as candidates. A third 
database scan is needed to discover the high-utility sequential 
patterns from the high-swu sequences. The US algorithm 
discovers the same set of resultant high-utility sequential 
patterns <b: 266, (ab): 239, (ab)d: 238, adbe: 226, a(bd)a: 231, 
d(ab)e: 250> as discovered by the UL algorithm. However, in 
this example, it generates only 45 candidates and scans the 
database three times in contrast to the 132 candidates and five 
database scans of the UL algorithm. 

3. Algorithm Description and Analysis 

The UL algorithm first generates all the length-1 candidates for 
high-swu sequences and calculates the set of length-1 high-swu 
sequences (lines 1 and 2). Subsequently, it uses the for loop 
described in lines 4 to 7 to determine the high-swu sequences for 
other levels. In each level, it first generates the candidates (line 5) 
and then scans the SDB for high-swu sequences (line 6). Finally, 
it determines the high-utility sequential patterns from all the sets 
of high-swu sequences (line 8).  

The US algorithm first declares a set, C, and initializes to 
NULL in order to contain all the high-swu sequences (lines 1 
and 2). Then, it invokes the recursive US procedure (line 3). 
This procedure is described in lines 4 to 14. Its three parameters 
are described in line 5. At the beginning, it determines all the 
high-swu items in the α-projected database SDBα (line 7). 
Subsequently, it appends each high-swu item β with α in 
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UL Algorithm. 
Begin 
Input: A sequence database SDB with utility values, minSeqUtil
Output: The complete set of high-utility sequential patterns 

1. Let C1 be the set of length-1 candidates for high-swu  
sequences 

2. Scan SDB once to find length-1 high-swu sequences 
3. Let F1 be the set of length-1 high-swu sequences 
4. for (k=2, Fk-1≠NULL, k++) 
5.       Ck = generate length-k candidate swu sequences 
6.       Scan SDB once to find Fk 
7. End for 
8. Scan SDB once to find high-utility sequential patterns 

from UkFk 
End  
 

appropriate form. Consider α=ab and β=c. If the first condition 
(line 7(a)) is true for β, then a new sequence abc is formed, 
otherwise a new sequence a(bc) is formed. However, this new 
sequence α’ is added in C (line 10). In lines 11 and 12, α’-
projected database SDBα’ is constructed, and a recursive call is 
made to the US procedure, respectively. Finally, the SDB needs 
to be scanned to discover all the high-utility sequential patterns 
from the set of candidates C (line 15).  

Observation 1 and lemma 3 show that the UL algorithm 
needs several database scans and generates a large number of 
candidates. On the other hand, the US algorithm significantly 
reduces the number of database scans and candidates 
compared to the UL algorithm. 

Observation 1. The number of database scans needed by the 
UL algorithm is directly dependent on the maximum length of 
the candidate sequences as it adopts the level-wise Apriori 
mechanism. If the maximum length of candidate sequences is 
N, this algorithm requires N+1 database scans. On the other 
hand, the number of database scans required for the US 
algorithm is totally independent of the maximum length of 
candidate sequences. A maximum of three database scans are 
always required. As the minimum sequence utility threshold 
decreases, the number of candidate sequences and their 
maximum length also increases. Hence, as the minSeqUtil 
decreases, running time increases very sharply in the UL 
algorithm. 

Lemma 3. If N1 is the number of candidates generated by 
the US algorithm, and N2 is the number of candidates 
generated by the UL algorithm, then N1 ≤ N2. 

Proof. A sequence X {x1, x2,…, xn} is a candidate sequence if 
all of its subsets of length-(n–1) are candidate sequences in the 
UL algorithm. This is because it is based on the level-wise 
Apriori mechanism. As a consequence, X may not be present in 
the database, or its utility value could be too low for it to 
become a candidate. In the US approach, if X is not present in 
the database, then it cannot appear in any projected database. 

 
US Algorithm.  
Begin 
Input: An SDB with utility values, minSeqUtil 
Output: The complete set of high-utility sequential patterns 

1. Let C be the set of all high swu sequences 
2. Initialize C to NULL 
3. Call US(NULL, 0, SDB) 
4. Procedure US(α, len, SDBα) 
5. Let α be a high-swu sequence, len is the length of α, 

   SDBα is the α-projected sequence database if α≠NULL, 
 otherwise it is the SDB 

6. Begin 
7.   Scan SDBα once and find each high-swu item β, such that

(a) β can be appended to α to form a high-swu sequence
   (b) β can be assembled to the last element of α to form 

a high-swu sequence 
8.   For each high-swu item β 
9.     Append β with α in appropriate form to generate a  

high-swu sequence α’ 
10.    C = C U α’ 
11.    Construct SDBα’ 
12.    Call US(α’, len+1, SDBα’)  
13.  End For 
14. End Procedure 
15. Scan SDB once to discover all high-utility sequential 

 patterns from C. 
End 

 
Therefore, it cannot appear as a candidate. Moreover, after 
determining X is a low-swu sequence, it is pruned. Accordingly, 
a candidate set of the US algorithm contains only the actual 
high-swu sequences; hence, N1 cannot be greater than N2.   � 

V. Experimental Results 

To evaluate the performance of our approach, we performed 
several experiments on synthetic datasets generated based on 
the principle introduced in [1] and using the source code 
available at [22]. These types of datasets have been used by 
most of the previous sequential data mining studies [1]-[5], [7], 
[19]-[21]. The parameters shown below are used to generate 
the datasets.  

|D|: Number of customers  
|C|: Average number of transactions per customer  
|T|: Average number of items per transaction  
|S|: Average length of maximal sequences  
|I|: Average length of itemsets in maximal sequences  
|N|: Number of distinct items 
We generated two datasets for our experiments:  

D100K.C8.T6.S6.I5.N10K and D200K.C10.T8.S8.I7.N10K. 
Moreover, we used two real-life datasets: BMS-WebView-1 
and BMS-WebView-2 [23], [24] contain web click-stream data. 
However, these datasets do not provide the internal and 
external utility values of the sequences. Most of the existing 
HUP mining algorithms [10]-[13] have generated random 
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Fig. 2. External utility distribution for 2,000 distinct items using
log-normal distribution. 
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numbers for internal and external utilities. We have generated 
random numbers for internal and external utilities ranging from 
1 to 10 and 1.0 to 10.0, respectively. Moreover, based on our 
observation in real-world databases that most items carry low 
profit, we generated the profit values using a log-normal 
distribution. Most of the HUP mining research [10]-[13] has 
adopted the same technique. Figure 2 shows the external utility 
distribution of 2,000 distinct items using a log-normal 
distribution. Our programs were written in Microsoft Visual 
C++ 6.0 and run with the Windows XP operating system on a 
Pentium dual core 2.13 GHz CPU with 2 GB main memory. 

At first, we compared the performance of UL and US 
algorithms on the D100K.C8.T6.S6.I5.N10K dataset.   
Figure 3(a) shows the comparison with respect to number of 
candidate sequences. The minimum sequence utility threshold 
range of 0.1% to 0.9% was used here. The x-axis of Fig. 3(a) 
shows the different minimum sequence utility thresholds, and 
the y-axis shows the number of candidate sequences. As 
discussed in section IV, the UL algorithm generates a large 
number of candidates due to the level-wise candidate 
generation-and-testing methodology. On the other hand, the 
US algorithm generates fewer candidates compared to the UL 
algorithm by exploiting a pattern growth approach. The result 
of Fig. 3(a) reflects the analysis of section IV. Figure 3(b) 
shows the comparison with respect to runtime. The x-axis of 
Fig. 3(b) shows the different minimum sequence utility 
thresholds, and the y-axis shows the runtime. Section IV also 
shows that the UL algorithm needs several database scans. 
Furthermore, the UL algorithm is directly dependent on the 
maximum length of candidate sequences. In contrast, the 
number of database scans needed by the US algorithm is not 
dependent on the maximum length of candidate sequences. It 
always needs a maximum of three database scans. Due to this 
achievement in scanning an SDB and reduced candidate set, 
the US algorithm significantly outperforms the UL algorithm 
as shown in Fig. 3(b). 

Subsequently, we compared the UL and US algorithms with 

 

Fig. 3. Performance evaluation of proposed algorithms. (a) 
number of candidates compared on the D100K.C8.T6.
S6.I5.N10K dataset, (b) runtime comparison on the 
D100K.C8.T6.S6.I5.N10K dataset, and (c) runtime 
comparison with different sequence database sizes on 
the D200K.C10.T8.S8.I7.N10K dataset. 
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respect to different SDB sizes on the D200K.C10.T8.S8.I7. 
N10K dataset as shown in Fig. 3(c). The x-axis of Fig. 3(c) 
shows the different number of sequences, and the y-axis shows 
the runtime. For each database size shown in the x-axis, two 
mining operations are performed with two different minimum 
sequence utility thresholds (2% and 5%) for each algorithm. 
Figure 3(c) shows that the US algorithm significantly 
outperforms the UL algorithm in all the stages in this dataset. It 
also demonstrates that the runtime increases when the number 
of sequences increases or the minimum sequence utility 
threshold decreases. Furthermore, it shows the scalability of 
our proposed algorithms with an increasing number of 
sequences in this SDB. The US algorithm is also memory-
efficient compared to the UL algorithm since it generates a 
small number of candidates. The US algorithm needs    
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3.481 MB memory in the D100K.C8.T6.S6.I5.N10K dataset 
(δ=0.1%) and 7.235 MB memory in the D200K.C10.T8.S8.I7. 
N10K dataset (δ=2%). In contrast, the UL algorithm needs 
8.179 MB memory in the D100K.C8.T6.S6.I5.N10K dataset 
(δ=0.1%) and 22.693 MB memory in the D200K.C10.T8.S8. 
I7.N10K dataset (δ=2%).  

Finally, we compared our proposed algorithms with the 
existing algorithms. As discussed in section II, the existing 
approaches are based on the support measure. However, our 
framework is based on the utility measure. To show the 
significance and efficiency of our proposed two algorithms, we 
compared them with the SQUIRE approach. Even though it is 
based on the support measure, SQUIRE considers non-binary 
frequency values of items. Hence, it is more related to our 
approach than the other methods. Section II also mentions that 
the SQUIRE approach presents two Apriori-based algorithms, 
Apriori-QSP and Apriori-All, as well as two pattern growth-
based algorithms, PrefixSpan-QSP and PrefixSpan-All. We 
compared our Apriori-based algorithm, UL, with the Apriori-
QSP and Apriori-All algorithms. We compared our pattern 
growth-based algorithm, US, with the PrefixSpan-QSP and 
PrefixSpan-All algorithms.  

We have used two real-life datasets BMS-WebView-1 and 
BMS-WebView-2 [23], [24] to compare our algorithms with 
the existing algorithms. These datasets contain several 
months’ worth of click-stream data from two e-commerce 
websites. Each transaction in these datasets is a web session 
consisting of all the product detail pages viewed in that 
session. That is, each product detail view is an item. The 
BMS-WebView-1 dataset has 59,602 transactions of 497 
distinct items. The BMS-WebView-2 dataset has 77,512 
transactions of 3,340 distinct items. The average transaction 
sizes are 2.5 and 5.0, respectively. In our experiments, an item 
is regarded as an item of a sequence, and a transaction is 
regarded as a sequence of items. Figure 4 shows the 
comparison of our Apriori-based algorithm UL with the 
existing Apriori-based algorithms, Apriori-QSP and Apriori-
All, on the real-life BMS-WebView-1 dataset. Similarly,  
Fig. 5 shows the comparison of our pattern growth-based 
algorithm, US, with the pattern growth-based algorithms, 
PrefixSpan-QSP and PrefixSpan-All, on the real-life BMS-
WebView-2 dataset. 

The x-axes of Figs. 4 and 5 show the different number of 
sequences, and the y-axes shows the runtime. For each 
database size shown in the x-axes, a mining operation is 
performed with a minimum threshold of 0.06% in BMS-
WebView-1 dataset (Fig. 4) and a minimum threshold of 
0.05% in BMS-WebView-2 dataset (Fig. 5). For the existing 
algorithms, the minimum threshold value represents the 
minimum support value for a mining operation. For our  

 

Fig. 4. Performance comparison with existing Apriori-based 
algorithms on BMS-WebView-1 dataset. 
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Fig. 5. Performance comparison with existing pattern growth-
based algorithms on BMS-WebView-2 dataset. 
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algorithms, the minimum threshold value represents the 
minimum sequence utility value in a mining operation. Due to 
the support measure, the existing algorithms generate a large 
number of sequential patterns. In section II, it is noted that they 
are not applicable for high-utility sequential pattern mining. As 
a consequence, many unimportant sequential patterns may be 
generated with low-utility value. However, our algorithms use 
a utility measure and prune all the low-utility sequential 
patterns during the mining process. They avoid the generation 
of a huge amount of traditional sequential patterns and 
efficiently discover only high-utility sequential patterns. 
Therefore, our algorithms significantly outperform the existing 
algorithms as shown in Figs. 4 and 5.  

Moreover, our algorithms also outperform the existing 
algorithms in memory usage since they avoid handling a large 
number of sequential patterns in the mining process. The UL 
algorithm needs 7.386 MB memory, the Apriori-All algorithm 
needs 12.109 MB memory, and the Apriori-QSP algorithm 
needs 15.724 MB memory on the BMS-WebView-1 dataset 
(minimum threshold=0.06%). The US algorithm needs   
3.075 MB memory, the PrefixSpan-All algorithm needs  
7.528 MB memory, and the PrefixSpan-QSP algorithm needs 
10.491 MB memory on the BMS-WebView-2 dataset 
(minimum threshold=0.05%). 
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VI. Conclusion 

In this paper, we proposed a novel framework for mining 
high-utility sequential patterns. Our proposed framework 
considers both internal and external utilities of a sequence and 
introduces a new measure, SeqUtility, to calculate the utility 
value of a sequence. It also defines the high-utility sequential 
patterns and the problem of mining high-utility sequential 
patterns. Furthermore, we proposed two new algorithms, UL 
and US, for mining high-utility sequential patterns. Of the two 
algorithms, UL is simpler and more straightforward for 
discovering high-utility sequential patterns. However, it suffers 
from the level-wise candidate generation-and-test problem and 
needs several database scans. The second algorithm, US, 
solves these problems by exploiting a sequential pattern growth 
approach. It generates a small number of candidates and needs 
a maximum of three database scans. Extensive performance 
analyses showed that our algorithms are very efficient and 
scalable for mining high-utility sequential patterns in sequence 
databases. 

References 

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 
11th Int. Conf. Data Eng., 1995, pp. 3-14.  

[2] R. Srikant and R. Agrawal, “Mining Sequential Patterns: 
Generalizations and Performance Improvements,” Proc. 5th Int. 
Conf. Extending Database Technol., 1996, pp. 3-17. 

[3] M.J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent 
Sequences,” Mach. Learning, vol. 42, no. 1-2, Jan. 2001, pp. 31-
60. 

[4] J. Ayres et al., “Sequential Pattern Mining Using a Bitmap 
Representation,” Proc. 8th ACM SIGKDD Int. Conf. Knowl. 
Discovery Data Mining, 2002, pp. 429-435. 

[5] J. Pei et al., “Mining Sequential Patterns by Pattern-Growth: The 
PrefixSpan Approach,” IEEE Trans. Knowl. Data Eng., vol. 16, 
no. 11, Oct. 2004, pp. 1424-1440. 

[6] J. Pei et al., “PrefixSpan: Mining Sequential Patterns by Prefix-
Projected Growth,” Proc. 17th Int. Conf. Data Eng., 2001, pp. 
215-224. 

[7] J. Wang, J. Han, and C. Li, “Frequent Closed Sequence Mining 
without Candidate Maintenance,” IEEE Trans. Knowl. Data Eng., 
vol. 19, no. 8, 2007, pp. 1042-1056. 

[8] H. Yao, H.J. Hamilton, and C.J. Butz, “A Foundational Approach 
to Mining Itemset Utilities from Databases,” Proc. 3rd SIAM Int. 
Conf. Data Mining, 2004, pp. 482-486. 

[9] H. Yao and H.J. Hamilton, “Mining Itemset Utilities from 
Transaction Databases,” Data Knowl. Eng., vol. 59, no. 3, 2006, 
pp. 603-626. 

[10] Y. Liu, W.K. Liao, and A. Choudhary, “A Two Phase Algorithm 

for Fast Discovery of High Utility of Itemsets,” Proc. 9th Pacific-
Asia Conf. Knowl. Discovery Data Mining , 2005, pp. 689-695. 

[11] C.F. Ahmed et al., “An Efficient Candidate Pruning Technique for 
HUP Mining,” Proc.13th Pacific-Asia Conf. Knowl. Discovery 
Data Mining, 2009, pp. 749-756. 

[12] Y.C. Li, J.S. Yeh, and C.C. Chang, “Isolated Items Discarding 
Strategy for Discovering High Utility Itemsets,” Data Knowl. 
Eng., vol. 64, no. 1, 2008, pp. 198-217. 

[13] C.F. Ahmed et al., “Efficient Tree Structures for HUP Mining in 
Incremental Databases,” IEEE Trans. Knowl. Data Eng., vol. 21, 
no. 12, 2009, pp. 1708-1721. 

[14] R. Agrawal and R. Srikant, “Fast Algorithms for Mining 
Association Rules in Large Databases,” Proc. 2nd Int. Conf. Very 
Large Data Bases, 1994, pp. 487-499. 

[15] J. Han et al., “Mining Frequent Patterns without Candidate 
Generation: A Frequent-Pattern Tree Approach,” Data Mining 
Knowl. Discovery, vol. 8, 2004, pp. 53-87. 

[16] J. Han et al., “Frequent Pattern Mining: Current Status and Future 
Directions,” Data Mining Knowl. Discovery, vol. 15, no. 1, 2007, 
pp. 55-86. 

[17] M.N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential 
Pattern Mining with Regular Expression Constraints,” Proc. 25th 
Int. Conf. Very Large Data Bases, 1999, pp. 223-234. 

[18] J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with 
Constraints in Large Databases,” Proc. 11th Int. Conf. Inform.  
Knowl. Management, 2002, pp. 18-25. 

[19] U. Yun, “A New Framework for Detecting Weighted Sequential 
Patterns in Large Sequence Databases,” Knowl.-Based Syst., vol. 
21, no. 2, 2008, pp. 110-122. 

[20] U. Yun, “WIS: Weighted Interesting Sequential Pattern Mining 
with a Similar Level of Support and/or Weight,” ETRI J., vol. 29, 
no. 3, June 2007, pp. 336-352. 

[21] C. Kim et al., “SQUIRE: Sequential Pattern Mining with 
Quantities,” J. Syst. Software, vol. 80, no. 10, 2007, pp. 1726-
1745. 

[22] http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_ 
mining/datasets/syndata.html 

[23] Frequent Itemset Mining Dataset Repository. Available at: 
http://fimi.cs.helsinki.fi/data/ 

[24] Z. Zheng, R. Kohavi, and L. Mason, “Real World Performance of 
Association Rule Algorithms,” Proc. 7th ACM SIGKDD Int. 
Conf. Knowl. Discovery Data Mining, 2001, pp. 401-406. 

 
 
 
 
 
 
 
 



686   Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010 

Chowdhury Farhan Ahmed received his BS 
and MS in computer science from the 
University of Dhaka, Bangladesh, in 2000 and 
2002, respectively. From 2003 to 2004, he 
worked as a faculty member at the Institute of 
Information Technology, University of Dhaka, 
Bangladesh. Since 2004, he has been working 

as a faculty member in the Department of Computer Science and 
Engineering, University of Dhaka, Bangladesh. Currently, he is a PhD 
candidate in the Department of Computer Engineering at Kyung Hee 
University, Rep. of Korea, and expecting to be awarded the PhD in 
August, 2010. His research interests are in the areas of data mining and 
knowledge discovery. 
 

Syed Khairuzzaman Tanbeer received his BS 
in applied physics and electronics and MS in 
computer science from the University of Dhaka, 
Bangladesh, in 1996 and 1998, respectively. He 
received his PhD in computer engineering from 
Kyung Hee University, Rep. of Korea, in 2010. 
Since 1999, he has been working as a faculty 

member in Department of Computer Science and Information 
Technology, Islamic University of Technology, Dhaka, Bangladesh. 
Currently, he is working as a postdoctoral fellow in the Department of 
Computer Engineering, Kyung Hee University, Rep. of Korea. His 
research interests include data mining, parallel and distributed mining, 
and knowledge discovery. 

 
Byeong-Soo Jeong received his BS in 
computer engineering from Seoul National 
University, Rep. of Korea, in 1983. He received 
his MS in computer science from KAIST, 
Daejeon, Rep. of Korea, in 1985, and his PhD in 
computer science from the Georgia Institute of 
Technology, Atlanta, USA, in 1995. In 1996, he 

joined the faculty at Kyung Hee University, Rep. of Korea, where he is 
now a professor at the College of Electronics and Information. From 
1985 to 1989, he was on the research staff at Data Communications 
Corp., Rep. of Korea. From 2003 to 2004, he was a visiting scholar at 
the Georgia Institute of Technology, Atlanta. His research interests 
include database systems, data mining, and mobile computing. 

 
 
 


