
676 Chowdhury Farhan Ahmed et al. © 2010 ETRI Journal, Volume 32, Number 5, October 2010

Mining sequential patterns is an important research
issue in data mining and knowledge discovery with broad
applications. However, the existing sequential pattern
mining approaches consider only binary frequency values
of items in sequences and equal importance/significance
values of distinct items. Therefore, they are not applicable
to actually represent many real-world scenarios. In this
paper, we propose a novel framework for mining high-
utility sequential patterns for more real-life applicable
information extraction from sequence databases with non-
binary frequency values of items in sequences and
different importance/significance values for distinct items.
Moreover, for mining high-utility sequential patterns, we
propose two new algorithms: UtilityLevel is a high-utility
sequential pattern mining with a level-wise candidate
generation approach, and UtilitySpan is a high-utility
sequential pattern mining with a pattern growth approach.
Extensive performance analyses show that our algorithms
are very efficient and scalable for mining high-utility
sequential patterns.

Keywords: Data mining, sequential patterns, high-
utility patterns, knowledge discovery.

Manuscript received Mar. 10, 2010; revised July 1, 2010; accepted Aug. 2, 2010.
Chowdhury Farhan Ahmed (phone: +82 31 201 2951, email: farhan@khu.ac.kr), Syed

Khairuzzaman Tanbeer (email: tanbeer@khu.ac.kr), and Byeong-Soo Jeong (corresponding
author, email: jeong@khu.ac.kr) are with the Database Lab, Department of Computer
Engineering, Kyung Hee University, Youngin, Rep. of Korea.

doi:10.4218/etrij.10.1510.0066

I. Introduction

Sequential pattern mining [1]-[6] discovers frequent
sequences from a sequence database (SDB). By maintaining
the order of elements in a sequence, it can discover crucial
knowledge from SDBs. For example, after buying a TV, user X
has bought a DVD player within one week. After traversing
web page W1, user Y has traversed web page W2. Therefore,
sequential pattern mining becomes important in many real-life
application domains such as market basket data analysis, web
usage mining, biomedical gene data analysis for detecting a
disease and producing a drug, telecommunication data analysis,
stock market, and weather trend prediction.

Even though sequential pattern mining plays an important
role in data mining applications, the existing sequential pattern
mining algorithms [1]-[7] consider only binary frequency
values of items in sequences and equal importance/significance
values of distinct items. Moreover, they use support measures
to detect whether a sequence is frequent or not. The
support/frequency of a sequence is the number of transaction
sequences (TSs) containing the sequence in the SDB. The
problem of sequential pattern mining is to find the complete set
of sequences satisfying a user-given minimum support
threshold in the SDB. However, this assumption cannot truly
represent many real-life scenarios. For example, in a retail
market, each item has a different price/profit value, and a user
may buy multiple copies of a same item. In a web traversal
sequence, a user may browse different time units in different
web pages, and each web page may have a different
importance/significance. This gives the motivation to design a
high-utility sequential pattern mining framework for SDBs.

The existing high-utility pattern (HUP) mining model [8]-
[13] is designed for non-sequential databases, that is, ordinary

A Novel Approach for Mining High-Utility
Sequential Patterns in Sequence Databases

 Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, and Byeong-Soo Jeong

ETRI Journal, Volume 32, Number 5, October 2010 Chowdhury Farhan Ahmed et al. 677

transaction databases, where the order of elements in a pattern
is not maintained. The existing model considers non-binary
frequency values of items in transactions and different profit
values of items in contrast to the assumption of binary
frequency values of items in transactions and equal
importance/significance values of items in the traditional
frequent pattern mining model [14]-[16]. It uses a measure
called “utility” to overcome the limitations of the support
measure. This utility measure calculates the actual profit value
of a pattern in a transaction database. The problem of HUP
mining refers to find out those patterns having utility value
greater than or equal to a user-given minimum threshold with
respect to the transaction database. By using this measure, very
important and useful patterns can be discovered which may not
be possible with the support measure. For example, the support
measure may not be able to detect a pattern such as gold ring,
gold necklace because this pattern may have very small
support value. On the other hand, a utility measure can easily
discover this pattern because it considers the profit value as
well as the non-binary frequency value. By utility mining,
several important business area decisions like maximizing
revenue, minimizing marketing, and/or inventory costs can be
considered, and knowledge about itemsets/customers
contributing to the majority of the profit can be discovered. In
addition to the real-world retail market, other application areas,
such as stock tickers, network traffic measurements, web-
server logs, data feeds from sensor networks, and
telecommunications call records can have similar solutions.

Motivated by the above real-life scenarios, in this paper, we
propose a novel framework for mining high-utility sequential
patterns. Our framework considers both internal and external
utilities of a sequence and introduces a new measure, sequence
utility (SeqUtility), to calculate the utility value of a sequence.
It also defines the high-utility sequential patterns and the
problem of mining high-utility sequential patterns. Moreover,
we propose two new algorithms for mining high-utility
sequential patterns: UtilityLevel (UL) is a high-utility
sequential pattern mining with a level-wise candidate
generation approach, and UtilitySpan (US) is a high-utility
sequential pattern mining with a pattern growth approach. The
first algorithm, UL, is simple and straightforward compared to
the second algorithm. However, it adopts a level-wise
candidate generation-and-test mechanism [1], [2]. Hence, it
generates a large number of candidate sequences and needs
several database scans. On the other hand, the second
algorithm, US, exploits a sequential pattern growth mining
approach [5], [6] and successfully avoids the problems of the
UL algorithm. It needs a maximum of three database scans.
Accordingly, it significantly reduces the number of candidate
sequences as well as the overall runtime for mining high-utility

sequential patterns. Extensive performance analyses show that
our algorithms are very efficient for mining high-utility
sequential patterns.

The remainder of this paper is organized as follows. In
section II, we describe related work. In section III, we propose
our framework. In section IV, we develop our proposed
algorithms for mining high-utility sequential patterns. In
section V, our experimental results are presented and analyzed.
Finally, in section VI, conclusions are drawn.

II. Related Work

1. HUP Mining

The theoretical model and definitions of HUP mining were
given in [8]. This approach is called mining with expected
utility. Later, the same authors proposed two new algorithms,
UMining and UMining_H, to calculate HUPs [9]. However,
these methods do not satisfy the “downward closure” property
of Apriori [14] and overestimate too many patterns. This
property says that if a pattern is infrequent, then all of its super-
patterns must be infrequent. The Two-Phase [10] algorithm
was developed based on the definitions of [8] for HUP mining
using the downward closure property with a measure called
“transaction-weighted utilization.” The isolated items
discarding strategy (IIDS) [12] for discovering HUPs was
proposed to reduce some candidates in every pass of databases.
Applying IIDS, the authors developed two efficient HUP
mining algorithms: FUM and DCG+. However, these
algorithms suffer from the problem of level-wise candidate
generation-and-test methodology and need several database
scans. An efficient candidate pruning technique, HUC-Prune
[11], has been proposed to avoid the level-wise candidate
generation-and-test problem in HUP mining. In [13], efficient
tree structures have been proposed for incremental HUP
mining. However, these approaches are not applicable for
mining high-utility sequential patterns.

2. Sequential Pattern Mining

The sequential pattern mining problem was first introduced
by Agrawal and Srikant in [1]. They have designed Apriori-
based algorithms to mine all the sequential patterns according
to a user-given minimum threshold. Later, an improved
algorithm, generalized sequential pattern [2], was proposed for
sequential pattern mining. Zaki [3] devised an algorithm which
is a sequential pattern discovery using equivalent classes
(SPADE). SPADE was developed for sequential pattern
mining using vertical data format. These algorithms are based
on the level-wise candidate generation-and-testing

678 Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010

mechanism and generate too many candidate patterns. The
SPAM algorithm [4] uses a depth-first search strategy using
an efficient vertical bitmap representation. An efficient
algorithm, PrefixSpan [5], [6], was proposed by using a
sequential pattern growth mining approach. The BIDE
algorithm [7] can efficiently discover closed sequential
patterns without candidate maintenance.

Research has been done for sequential pattern mining with
constraints. The SPIRIT algorithm [17] has been developed for
mining sequential patterns with user-specified regular
expression constraints. Pei and others [18] developed a new
framework, Prefix-growth, for different types of constraint-
based sequential pattern mining including item, length, super-
pattern, aggregate, regular expression, duration, and gap
constraints. Some algorithms have also been developed to
handle weight and quantity constraints in sequential pattern
mining. The WSpan [19] and WIS [20] algorithms use
different weight values for different items, but cannot consider
non-binary frequency values of items. Kim and others [21]
devised sequential pattern mining with quantities (SQUIRE).
SQUIRE can consider non-binary frequency values of items.
Kim and others proposed two algorithms: Apriori-QSP and
PrefixSpan-QSP. These were created by extending the existing
Apriori-style and PrefixSpan algorithms of traditional
sequential pattern mining, respectively. They have also
proposed two improved versions of these algorithms, Apriori-
All and PrefixSpan-All [21]. However, the SQUIRE approach
cannot consider items with different weights/profits. Moreover,
it is based on the support measure. For example, if a sequence
is {a: 3, b: 2}, then it just finds its support in the SDB, that is, in
how many TSs it is present. As a consequence, none of the
existing approaches are capable of mining high-utility
sequences. Therefore, in this paper, we propose a novel
framework and two new algorithms for mining high-utility
sequential patterns in SDBs.

III. Proposed Framework

Let I={i1, i2,…, in} be a set of items and P={p1, p2,…, pl} be
a pattern (itemset), where P⊆I and l∈[1, n]. A sequence S,
denoted by {s1, s2,…, sr}, is an ordered list of patterns, that is,
each sq (1 ≤ q ≤ r) is a pattern P, and each pattern appearing in
a sequence is called an element of the sequence. The length of
a sequence is the number of instances of items inside it.
Consider there are two sequences, for example, α={a1 a2…ax}
and β={b1 b2…by} (x ≤ y). If there exists j1< j2<…< jx ≤ y, such
that a1⊆ 1jb , a2⊆ 2jb ,…, and ax⊆ xjb , then α is a subsequence
of β, and β is a super-sequence of α. An SDB contains a
number of TSs: {TS1, TS2,…, TSm}. TSk (1≤ k ≤ m) contains a

Fig. 1. Examples of (a) sequence database with internal utility and
(b) external utility table.

6

a
b

c
d
e

Profit ($)
per unit

Item

5

7
3

10

f 8
g 9

Sequence
ID

S1

S3

S2

S4

S5

S6

Sequence with internal utility
Sequence
utility ($)

130

74

85

180

67

207

a(3) {a(2) b(6) d(2)} f(1) a(5) d(1)
e(3) {a(2) b(5)} d(1) c(4)

{c(1) f(2)} b(3) {d(1) e(4)}

a(2) {b(7) d(4)} {a(6) b(3)}e(5)

{d(1) f(3)} c(5) g(2)

d(2) e(1) {a(7) b(8)} d(3) b(6) e(3)

(a) (b)

tuple <SIDk, Sk>, where SIDk is the sequence ID, and Sk is the
sequence of the TSk. TSk is said to contain a sequence, X, if X is
a subsequence of Sk.

Definition 1. The internal utility value of an item, ij, in TSk is
represented by iu(ij, Sk). External utility eu(ij) is the
impact/significance value of item ij. Figure 1 shows an
example SDB with internal and external utility values. Here,
the internal utility values represent the quantities of items in
sequences, and the external utility value of each item represents
profit ($) per unit of that item. For example, in Fig. 1,
iu(b, S1)=6, and eu(b)=7. However, an item may appear
multiple times in a TS. In that case, iu(ij, Sk) is the addition of
all the quantities of ij in sequence Sk. For example, in Fig. 1,
iu(a, S1)=10.

Definition 2. Sequence utility, su(ij, Sk), is the quantitative
measure of utility for item ij in TSk, defined by

 su(ij, Sk)=iu(ij, Sk)×eu(ij). (1)

For example, su(b, S1)=6×7=42 in Fig. 1.
Definition 3. A sequence, for example, X={x1, x2, …, xm}, is

called an m-sequence, where X⊆Sk, xp⊆I , and 1≤p≤m. To
calculate the internal utility of an item, ij, in a sequence X
(X⊆Sk), we have to take only the internal utility of ij in X. For
example, iu(d, de(ab), S6)=2 (where X=de(ab)). Hence, as with
an item, a sequence X may have multiple distinct occurrences
in TSk. Accordingly, for sequence utility of X in Sk, su(X, Sk) is
defined by

 su(X, Sk) = (, ,)
k j

j k
X S i X

su i X S
∀ ∈ ∈
∑ ∑ . (2)

However, in the above equation, we refer to only all distinct
occurrences of X. For example, sequence de has two distinct
occurrences in S6. Hence, su(de, S6)=(2×10+1×6)+(3×10
+3×6)=26+48=74 in Fig. 1. If multiple distinct occurrences
cannot be formed, then a sequence is formed by taking the
maximum su of a sequence. For example, in the S6 sequence,
eb can be formed by taking the fourth b or the sixth b. Here, the
fourth item b is taken as it gives the maximum su of eb in S6.

ETRI Journal, Volume 32, Number 5, October 2010 Chowdhury Farhan Ahmed et al. 679

Definition 4. The sequence utility of TSk is defined by
 su(TSk) = (,).

j k

j k
i S

su i S
∈
∑ (3)

For example, su(TS1)=su(a, S1)+su(b, S1)+su(d, S1)+su(f, S1)
=50+42+30+8=130.

Definition 5. The sequence utility of a sequence X in an
SDB is defined by

 su(X, SDB) =

(,).
k k

k
TS SDB X S

su X S
∈ ⊆
∑ ∑ (4)

For example, su(a(bd)a, SDB)=su(a(bd)a, TS1)+su(a(bd)a,
TS4)=102+129=231 in Fig. 1

Definition 6. The sequence utility value of an SDB is
defined by

 su(SDB) = ().
k

k
TS SDB

su TS
∈
∑ (5)

For example, su(SDB)=743 in Fig. 1.
Definition 7. The minimum sequence utility threshold, δ, is

given by the percentage of sequence utility value of the
database. In Fig. 1, if δ is 30% or can be expressed as 0.3, then
the minimum sequence utility value can be defined as

 minSeqUtil=δ×su(SDB). (6)

Hence, in this example, minSeqUtil=0.3×743=223 in Fig. 1.
Definition 8. A sequence X is a high-utility sequential pattern

if su(X) ≥ minSeqUtil. Mining high-utility sequential pattern
means discovering all the sequences X having criteria su(X) ≥
minSeqUtil. For minSeqUtil=223, a(bd)a is a high-utility
sequential patten as su(a(bd)a)=231.

The most challenging problem for high-utility sequential
pattern mining is that sequence utilities do not have the
downward closure property. Consider minSeqUtil=223 in
Fig. 1: a is a low-utility sequential pattern as su(a)=135, but its
super-sequence a(bd)a is a high-utility sequential pattern as
su(a(bd)a)=231. Therefore, the downward closure property is
not satisfied. To maintain the downward closure property in
high-utility sequential pattern mining, we define a new
measure called sequence-weighted utility (swu).

Definition 9. The swu value of a sequence X is defined by
 swu (X) = ().

k k

k
X S TS SDB

su TS
⊆ ∧ ∈

∑ (7)

Definition 10. X is a high-swu sequence if swu(X) ≥
minSeqUtil.

As it is the maximum possible sequence utility value of a
sequence, the downward closure property can be maintained
by using this value. For example, swu(g)=su(TS5)=67 in Fig. 1.
Here, for minSeqUtil=223 in Fig. 1, as swu(g) < minSeqUtil,
any super-sequence of g cannot be a high-swu sequence and
obviously cannot be a high-utility sequential pattern. In our
approach, after finding all the high-swu sequence maintaining
the downward closure property, we calculate all the high-utility

sequential patterns form high-swu sequences.
Lemma 1. The swu value of a sequence X maintains the

downward closure property.
Proof. Let X be a high-swu sequence and SDBX is the set of

sequences containing X. Let Y be a superset of X, then Y cannot
be present in any sequence where X is absent. Therefore,
according to definition 9, the maximum swu value of Y is
swu(X). Accordingly, if swu(X) is less than minSeqUtil, Y
cannot be a high-swu sequence. �

Lemma 2. For an SDB and minimum sequence utility
threshold, the set of high-utility sequential patterns (S) is a
subset of the set of high-swu sequences (WS).

Proof. Let X be a high-utility sequential pattern. According to
definitions 5 and 9, su(X) must be less than or equal to swu(X).
So, if X is a high-utility sequential pattern, it must be a high-
swu sequence. Hence, X is a member of the set WS and S
⊆WS. �

IV. Mining High-Utility Sequential Patterns

1. UL Algorithm

Our first proposed algorithm, UL, is simple and
straightforward. It is used for generating high-utility sequential
patterns. It adopts a level-wise candidate generation approach
for mining high-utility sequential patterns. At first, it generates
the candidates for high-swu sequences, and subsequently
generates high-swu sequences (actual candidates for high-
utility sequential patterns). Finally, it detects the high-utility
sequential patterns from high-swu sequences.

The level-by-level candidate generation-and-testing
mechanism is shown in Table 1 for the SDB presented in Fig. 1
and minSeqUtil=30%. In level-1, all the distinct items are
candidate length-1 high-swu sequences. The UL algorithm
scans the SDB once to generate all the length-1 high-swu
sequences. In level-2, 51 candidate high-swu sequences are
generated as shown in Table 1. For one length-1 high-swu
sequence, UL generates length-2 candidate sequences by
joining it with other length-1 high-swu sequences which
include it. For example, for length-1 candidate sequence a,
length-2 candidate sequences aa, ab, ac, ad, ae, and af are
generated. As there are 6 length-1 candidate sequences, a total
of 6×6=36 length-2 candidate sequences are generated, that is,
for N distinct items, N2 length-2 sequences containing two
elements will be generated. On the other hand, a length-1
candidate sequence joins with others to form length-2 single
element candidate sequences, such as when sequence a joins b,
c, d, e, and f to form (ab), (ac), (ad), (ae), and (af). Similarly,
sequence b joins with c, d, e, and f to form (bc), (bd), (be), and
(bf). In this way, 5 candidate sequences for a, 4 candidate

680 Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010

Table 1. Candidate generation process for UL algorithm.

Level Candidate high-swu sequences Candidate high-utility seq. pattern (high-swu sequence) with swu values

1
7 candidates
a, b, c, d, e, f, g

6 high-swu sequences
a: 602, b: 676, c: 226, d: 743, e: 546, f: 271

2

51 candidates (14 candidates not appear in SDB at all)
aa, ab, ac, ad, ae, af
ba, bb, bc, bd, be, bf
……………………
(ab), (ac), (ad), (ae), (af)
(bc), (bd), (be), (bf)
……………………

17 high-swu sequences
aa: 310, ab: 517, ad: 602, ae: 387, ba: 310, bb: 387, bd: 496, be: 461,
da: 517, db: 387, dd: 337, de: 387, ea: 292, eb: 292, ed: 292, (ab): 602,
(bd): 310

3

70 candidates (25 candidates not appear in SDB at all)
aaa, aab, aad, aae, a(ab), aba, abb
……………………
(ab)a, (ab)b, (ab)d, (ab)e
……………………

18 high-swu sequences
aba: 310, abe: 387, ada: 310, adb: 387, ade: 387, a(ab): 310, a(bd): 310,
bbe: 387, dad: 337, dae: 387, dbe: 387, d(ab): 387, ead: 292, ebd: 292,
e(ab): 292, (ab)d: 422, (ab)e: 387, (bd)a: 310

4
4 candidates
adbe, a(bd)a, d(ab)e, e(ab)d

4 high-swu sequences
adbe: 387, a(bd)a: 310, d(ab)e: 387, e(ab)d: 292

sequences for b, 3 candidate sequences for c, 2 candidate
sequences for d, and 1 candidate sequence for e are generated.
Accordingly, a total of 5+4+3+2+1=15 ((6×5)/2)) candidate
sequences are generated, that is, for N distinct items,
(N×(N–1))/2 length-2 single-element candidate sequences will
be generated. Hence, a total of 36+15=51 length-2 candidate
sequences are generated. The original SDB must be scanned
once again with all these candidate sequences to detect the
high-swu sequences. It is noticeable that among the 51
candidates, 14 candidates, for example, ca, cc, ef, and (ce), do
not appear in the SDB at all. However, Table 1 also shows that
17 high-swu sequences (candidate high-utility sequential
patterns) are generated from these 51 candidates.

From level-3 to the last level, the UL algorithm generates
high-swu candidate sequences for k-th level by joining Lk-1

(high-swu sequences for (k–1)th level) with Lk-1. A sequence X
joins with another sequence Y if the subsequence obtained by
dropping the first item of X is the same as the subsequence
obtained by dropping the last item of Y. The new candidate
sequence is formed by joining sequence X with the last item of
Y. The added item becomes a separate element if it was a
separate element of Y, and otherwise, part of the last element of
X. For example, length-2 high-swu sequences ab and bd form
length-3 candidate high-swu sequence abd. On the other hand,
length-2 high-swu sequences ab and (bd) form length-3
candidate high-swu sequence a(bd). After generating all the
candidate high-swu sequences by joining, UL algorithm prunes
those candidate sequences having at least one subsequence
which is not a length-(k–1) high-swu sequence. For example,
after generating length-3 candidate high-swu sequence eae
from length-2 high-swu sequences ea and ae, it prunes eae as

its subsequence ee is not a high-swu sequence. However, for
level-3 of this example, this algorithm generates a total of 70
candidate sequences after joining and pruning and scans SDB
again to detect 18 high-swu sequences as shown in Table 1.
Similarly, it generates length-4 candidate high-swu sequences
and calculates 4 high-swu sequences. No candidate high-swu
sequence is generated for level-5. Finally, it scans the SDB
with these high-utility-swu sequences to discover the high-
utility sequential patterns. As a consequence, the UL algorithm
discovers a total of 6 high-utility sequential patterns <b: 266,
(ab): 239, (ab)d: 238, adbe: 226, a(bd)a: 231, d(ab)e: 250> by
generating a total of 132 candidates and with five database
scans.

2. US Algorithm

Even though our first proposed algorithm UL can discover
the final resultant high-utility sequential patterns successfully, it
suffers from the level-wise candidate generation-and-testing
problem and hence generates a large number candidate
sequences. Moreover, its number of database scans is directly
dependent on the maximum length of candidate sequences.
Consider the example presented in the last section. It needs a
total of 5 database scans as the maximum candidate length is 4
(last scan is needed for detecting high-utility sequential patterns
from the high-swu sequences). Hence, it needs a total of N+1
database scans for the maximum candidate length of N.
Accordingly, it needs several database scans to find the
resultant sequences.

To solve the problems of our first approach, in this
subsection, we propose a second algorithm US. It exploits a

ETRI Journal, Volume 32, Number 5, October 2010 Chowdhury Farhan Ahmed et al. 681

Table 2. Candidate generation process for US algorithm.

Prefix Projected SDB Candidate high-utility seq. pattern (high-swu sequence) with swu values

a (abd)fad: 130, (_b)dc: 85, (bd)(ab)e: 180, (_b)dbe: 207

17 high-swu sequences
a: 602, aa: 310, ab: 517, (ab): 602, ad: 602, ae: 387, a(ab): 310, aba: 310,
a(bd): 310, abe: 387, a(bd)a: 310, (ab)d: 422, (ab)e: 387, ada: 410,
adb: 387, ade: 387, adbe: 387

b (_d)fad: 130, dc: 85, (de): 74, (_d)(ab)e: 180, dbe: 207 8 high-swu sequences
b: 676, ba: 310, bb: 387, bd: 496, (bd): 310, be: 461, bbe: 387, (bd)a: 310

c (_f)b(de): 74 1 high-swu sequence c: 226

d fad: 130, c: 85, (_e): 74, (ab)e: 180, (_f)c: 67,
e(ab)dbe: 207

10 high-swu sequences
d: 743, da: 517, db: 387, de: 387, dd: 337, dad: 337, d(ab): 387, dae: 387,
d(ab)e: 387, dbe: 387

e (ab)dc: 85, (ab)dbe: 207 8 high-swu sequences
e: 546, ea: 292, eb: 292, ed: 292, e(ab): 292, ead: 292, e(ab)d: 292, ebd: 292

f ad: 130, b(de): 74, c: 67 1 high-swu sequence f: 271

sequential pattern growth mining approach to avoid the level-
wise candidate generation-and-testing approach. Furthermore,
its number of database scan is independent on the maximum
candidate length. It always needs a maximum of three database
scans. Therefore, it significantly reduces the overall runtime for
mining high-utility sequential patterns.

First, the US algorithm scans the SDB once to detect
length-1 swu sequences. Subsequently, it generates projected
databases by considering length-1 swu sequences as prefixes
with a second database scan. Then, using a pattern growth
approach, it divides the search spaces (projected databases)
recursively and applies the same technique into them. By
utilizing this divide-and-conquer method, it generates very few
candidates compared to the UL algorithm. Note that the US
algorithm only generates the high-swu sequences without
generating a large number of intermediate candidate high-swu
sequences needed by the UL algorithm as shown in Table 2.

For prefix a, the UL algorithm generates a projected database
(shown in Table 2). Here, (_b) means that the last item in the
prefix, which is a, forms one element (ab). However, in the
a-projected database, we get <a: 310, b: 517, _b: 602, d: 602,
e: 387, f: 130, and c: 85>. Items c and f cannot form a candidate
sequence with item a as they have low-swu values (130 and 85,
respectively) in the a-projected database with respect to the
minSeqUtil. As a consequence, 6 candidate sequences a: 602,
aa: 602, ab: 517, (ab): 602, ad: 602, and ae: 387 are generated
here. Now, according to the divide-and-conquer rule, we apply
the same technique on the projected databases of aa, ab, (ab),
ad, and ae. The aa-projected database contains {(_bd) fad: 130,
(_b)e: 180}, and we get <a: 130, _b: 310, d: 130, f: 130,
e: 180>. So, only one candidate sequence, a(ab): 310, is
generated. The ab-projected database contains {(_d)fad: 130,
(_d)(ab)e: 180, e: 207}, and we get <a: 310, b: 180, d: 130,

_d: 310, e: 387, f: 130>. Candidate sequences aba: 310,
a(bd): 310, and abe: 387 are generated here. Similarly, the
other candidate sequences are generated. Table 2 shows that a
total of 17 candidate sequences are generated by prefix-a. It
also shows the other candidate sequences generated by other
prefix items. However, as mentioned earlier, the US algorithm
only generates the high-swu sequences as candidates. A third
database scan is needed to discover the high-utility sequential
patterns from the high-swu sequences. The US algorithm
discovers the same set of resultant high-utility sequential
patterns <b: 266, (ab): 239, (ab)d: 238, adbe: 226, a(bd)a: 231,
d(ab)e: 250> as discovered by the UL algorithm. However, in
this example, it generates only 45 candidates and scans the
database three times in contrast to the 132 candidates and five
database scans of the UL algorithm.

3. Algorithm Description and Analysis

The UL algorithm first generates all the length-1 candidates for
high-swu sequences and calculates the set of length-1 high-swu
sequences (lines 1 and 2). Subsequently, it uses the for loop
described in lines 4 to 7 to determine the high-swu sequences for
other levels. In each level, it first generates the candidates (line 5)
and then scans the SDB for high-swu sequences (line 6). Finally,
it determines the high-utility sequential patterns from all the sets
of high-swu sequences (line 8).

The US algorithm first declares a set, C, and initializes to
NULL in order to contain all the high-swu sequences (lines 1
and 2). Then, it invokes the recursive US procedure (line 3).
This procedure is described in lines 4 to 14. Its three parameters
are described in line 5. At the beginning, it determines all the
high-swu items in the α-projected database SDBα (line 7).
Subsequently, it appends each high-swu item β with α in

682 Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010

UL Algorithm.
Begin
Input: A sequence database SDB with utility values, minSeqUtil
Output: The complete set of high-utility sequential patterns

1. Let C1 be the set of length-1 candidates for high-swu
sequences

2. Scan SDB once to find length-1 high-swu sequences
3. Let F1 be the set of length-1 high-swu sequences
4. for (k=2, Fk-1≠NULL, k++)
5. Ck = generate length-k candidate swu sequences
6. Scan SDB once to find Fk
7. End for
8. Scan SDB once to find high-utility sequential patterns

from UkFk
End

appropriate form. Consider α=ab and β=c. If the first condition
(line 7(a)) is true for β, then a new sequence abc is formed,
otherwise a new sequence a(bc) is formed. However, this new
sequence α’ is added in C (line 10). In lines 11 and 12, α’-
projected database SDBα’ is constructed, and a recursive call is
made to the US procedure, respectively. Finally, the SDB needs
to be scanned to discover all the high-utility sequential patterns
from the set of candidates C (line 15).

Observation 1 and lemma 3 show that the UL algorithm
needs several database scans and generates a large number of
candidates. On the other hand, the US algorithm significantly
reduces the number of database scans and candidates
compared to the UL algorithm.

Observation 1. The number of database scans needed by the
UL algorithm is directly dependent on the maximum length of
the candidate sequences as it adopts the level-wise Apriori
mechanism. If the maximum length of candidate sequences is
N, this algorithm requires N+1 database scans. On the other
hand, the number of database scans required for the US
algorithm is totally independent of the maximum length of
candidate sequences. A maximum of three database scans are
always required. As the minimum sequence utility threshold
decreases, the number of candidate sequences and their
maximum length also increases. Hence, as the minSeqUtil
decreases, running time increases very sharply in the UL
algorithm.

Lemma 3. If N1 is the number of candidates generated by
the US algorithm, and N2 is the number of candidates
generated by the UL algorithm, then N1 ≤ N2.

Proof. A sequence X {x1, x2,…, xn} is a candidate sequence if
all of its subsets of length-(n–1) are candidate sequences in the
UL algorithm. This is because it is based on the level-wise
Apriori mechanism. As a consequence, X may not be present in
the database, or its utility value could be too low for it to
become a candidate. In the US approach, if X is not present in
the database, then it cannot appear in any projected database.

US Algorithm.
Begin
Input: An SDB with utility values, minSeqUtil
Output: The complete set of high-utility sequential patterns

1. Let C be the set of all high swu sequences
2. Initialize C to NULL
3. Call US(NULL, 0, SDB)
4. Procedure US(α, len, SDBα)
5. Let α be a high-swu sequence, len is the length of α,

 SDBα is the α-projected sequence database if α≠NULL,
 otherwise it is the SDB

6. Begin
7. Scan SDBα once and find each high-swu item β, such that

(a) β can be appended to α to form a high-swu sequence
 (b) β can be assembled to the last element of α to form

a high-swu sequence
8. For each high-swu item β
9. Append β with α in appropriate form to generate a

high-swu sequence α’
10. C = C U α’
11. Construct SDBα’
12. Call US(α’, len+1, SDBα’)
13. End For
14. End Procedure
15. Scan SDB once to discover all high-utility sequential

 patterns from C.
End

Therefore, it cannot appear as a candidate. Moreover, after
determining X is a low-swu sequence, it is pruned. Accordingly,
a candidate set of the US algorithm contains only the actual
high-swu sequences; hence, N1 cannot be greater than N2. �

V. Experimental Results

To evaluate the performance of our approach, we performed
several experiments on synthetic datasets generated based on
the principle introduced in [1] and using the source code
available at [22]. These types of datasets have been used by
most of the previous sequential data mining studies [1]-[5], [7],
[19]-[21]. The parameters shown below are used to generate
the datasets.

|D|: Number of customers
|C|: Average number of transactions per customer
|T|: Average number of items per transaction
|S|: Average length of maximal sequences
|I|: Average length of itemsets in maximal sequences
|N|: Number of distinct items
We generated two datasets for our experiments:

D100K.C8.T6.S6.I5.N10K and D200K.C10.T8.S8.I7.N10K.
Moreover, we used two real-life datasets: BMS-WebView-1
and BMS-WebView-2 [23], [24] contain web click-stream data.
However, these datasets do not provide the internal and
external utility values of the sequences. Most of the existing
HUP mining algorithms [10]-[13] have generated random

ETRI Journal, Volume 32, Number 5, October 2010 Chowdhury Farhan Ahmed et al. 683

Fig. 2. External utility distribution for 2,000 distinct items using
log-normal distribution.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

External utility

N
o.

 o
f i

te
m

s

numbers for internal and external utilities. We have generated
random numbers for internal and external utilities ranging from
1 to 10 and 1.0 to 10.0, respectively. Moreover, based on our
observation in real-world databases that most items carry low
profit, we generated the profit values using a log-normal
distribution. Most of the HUP mining research [10]-[13] has
adopted the same technique. Figure 2 shows the external utility
distribution of 2,000 distinct items using a log-normal
distribution. Our programs were written in Microsoft Visual
C++ 6.0 and run with the Windows XP operating system on a
Pentium dual core 2.13 GHz CPU with 2 GB main memory.

At first, we compared the performance of UL and US
algorithms on the D100K.C8.T6.S6.I5.N10K dataset.
Figure 3(a) shows the comparison with respect to number of
candidate sequences. The minimum sequence utility threshold
range of 0.1% to 0.9% was used here. The x-axis of Fig. 3(a)
shows the different minimum sequence utility thresholds, and
the y-axis shows the number of candidate sequences. As
discussed in section IV, the UL algorithm generates a large
number of candidates due to the level-wise candidate
generation-and-testing methodology. On the other hand, the
US algorithm generates fewer candidates compared to the UL
algorithm by exploiting a pattern growth approach. The result
of Fig. 3(a) reflects the analysis of section IV. Figure 3(b)
shows the comparison with respect to runtime. The x-axis of
Fig. 3(b) shows the different minimum sequence utility
thresholds, and the y-axis shows the runtime. Section IV also
shows that the UL algorithm needs several database scans.
Furthermore, the UL algorithm is directly dependent on the
maximum length of candidate sequences. In contrast, the
number of database scans needed by the US algorithm is not
dependent on the maximum length of candidate sequences. It
always needs a maximum of three database scans. Due to this
achievement in scanning an SDB and reduced candidate set,
the US algorithm significantly outperforms the UL algorithm
as shown in Fig. 3(b).

Subsequently, we compared the UL and US algorithms with

Fig. 3. Performance evaluation of proposed algorithms. (a)
number of candidates compared on the D100K.C8.T6.
S6.I5.N10K dataset, (b) runtime comparison on the
D100K.C8.T6.S6.I5.N10K dataset, and (c) runtime
comparison with different sequence database sizes on
the D200K.C10.T8.S8.I7.N10K dataset.

0

100,000

200,000

300,000

400,000

500,000

0.1 0.3 0.5 0.7 0.9
Minimum sequence utility threshold (%)

N
o.

 o
f c

an
di

da
te

s

UL
US

0

500

1,000

1,500

0.1 0.3 0.5 0.7 0.9
Minimum sequence utility threshold (%)

R
un

tim
e

(s
)

(a)

(b)

0

500

1,000

1,500

2,000

2,500

40k 80k 120k 160k 200k
No. of sequences

R
un

tim
e

(s
)

UL (δ=2%)
UL (δ=5%)
US (δ=2%)
US (δ=5%)

(c)

UL
US

respect to different SDB sizes on the D200K.C10.T8.S8.I7.
N10K dataset as shown in Fig. 3(c). The x-axis of Fig. 3(c)
shows the different number of sequences, and the y-axis shows
the runtime. For each database size shown in the x-axis, two
mining operations are performed with two different minimum
sequence utility thresholds (2% and 5%) for each algorithm.
Figure 3(c) shows that the US algorithm significantly
outperforms the UL algorithm in all the stages in this dataset. It
also demonstrates that the runtime increases when the number
of sequences increases or the minimum sequence utility
threshold decreases. Furthermore, it shows the scalability of
our proposed algorithms with an increasing number of
sequences in this SDB. The US algorithm is also memory-
efficient compared to the UL algorithm since it generates a
small number of candidates. The US algorithm needs

684 Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010

3.481 MB memory in the D100K.C8.T6.S6.I5.N10K dataset
(δ=0.1%) and 7.235 MB memory in the D200K.C10.T8.S8.I7.
N10K dataset (δ=2%). In contrast, the UL algorithm needs
8.179 MB memory in the D100K.C8.T6.S6.I5.N10K dataset
(δ=0.1%) and 22.693 MB memory in the D200K.C10.T8.S8.
I7.N10K dataset (δ=2%).

Finally, we compared our proposed algorithms with the
existing algorithms. As discussed in section II, the existing
approaches are based on the support measure. However, our
framework is based on the utility measure. To show the
significance and efficiency of our proposed two algorithms, we
compared them with the SQUIRE approach. Even though it is
based on the support measure, SQUIRE considers non-binary
frequency values of items. Hence, it is more related to our
approach than the other methods. Section II also mentions that
the SQUIRE approach presents two Apriori-based algorithms,
Apriori-QSP and Apriori-All, as well as two pattern growth-
based algorithms, PrefixSpan-QSP and PrefixSpan-All. We
compared our Apriori-based algorithm, UL, with the Apriori-
QSP and Apriori-All algorithms. We compared our pattern
growth-based algorithm, US, with the PrefixSpan-QSP and
PrefixSpan-All algorithms.

We have used two real-life datasets BMS-WebView-1 and
BMS-WebView-2 [23], [24] to compare our algorithms with
the existing algorithms. These datasets contain several
months’ worth of click-stream data from two e-commerce
websites. Each transaction in these datasets is a web session
consisting of all the product detail pages viewed in that
session. That is, each product detail view is an item. The
BMS-WebView-1 dataset has 59,602 transactions of 497
distinct items. The BMS-WebView-2 dataset has 77,512
transactions of 3,340 distinct items. The average transaction
sizes are 2.5 and 5.0, respectively. In our experiments, an item
is regarded as an item of a sequence, and a transaction is
regarded as a sequence of items. Figure 4 shows the
comparison of our Apriori-based algorithm UL with the
existing Apriori-based algorithms, Apriori-QSP and Apriori-
All, on the real-life BMS-WebView-1 dataset. Similarly,
Fig. 5 shows the comparison of our pattern growth-based
algorithm, US, with the pattern growth-based algorithms,
PrefixSpan-QSP and PrefixSpan-All, on the real-life BMS-
WebView-2 dataset.

The x-axes of Figs. 4 and 5 show the different number of
sequences, and the y-axes shows the runtime. For each
database size shown in the x-axes, a mining operation is
performed with a minimum threshold of 0.06% in BMS-
WebView-1 dataset (Fig. 4) and a minimum threshold of
0.05% in BMS-WebView-2 dataset (Fig. 5). For the existing
algorithms, the minimum threshold value represents the
minimum support value for a mining operation. For our

Fig. 4. Performance comparison with existing Apriori-based
algorithms on BMS-WebView-1 dataset.

0

100

200

300

400

500

600

700

12k 24k 36k 48k 60k
No. of sequences

R
un

tim
e

(s
)

Apriori-QSP
Apriori-All
UL

Fig. 5. Performance comparison with existing pattern growth-
based algorithms on BMS-WebView-2 dataset.

0

100

200

300

400

500

600

15k 30k 45k 60k 75k
No. of sequences

R
un

tim
e

(s
)

PrefixSpan-QSP

PrefixSpan-All

US

algorithms, the minimum threshold value represents the
minimum sequence utility value in a mining operation. Due to
the support measure, the existing algorithms generate a large
number of sequential patterns. In section II, it is noted that they
are not applicable for high-utility sequential pattern mining. As
a consequence, many unimportant sequential patterns may be
generated with low-utility value. However, our algorithms use
a utility measure and prune all the low-utility sequential
patterns during the mining process. They avoid the generation
of a huge amount of traditional sequential patterns and
efficiently discover only high-utility sequential patterns.
Therefore, our algorithms significantly outperform the existing
algorithms as shown in Figs. 4 and 5.

Moreover, our algorithms also outperform the existing
algorithms in memory usage since they avoid handling a large
number of sequential patterns in the mining process. The UL
algorithm needs 7.386 MB memory, the Apriori-All algorithm
needs 12.109 MB memory, and the Apriori-QSP algorithm
needs 15.724 MB memory on the BMS-WebView-1 dataset
(minimum threshold=0.06%). The US algorithm needs
3.075 MB memory, the PrefixSpan-All algorithm needs
7.528 MB memory, and the PrefixSpan-QSP algorithm needs
10.491 MB memory on the BMS-WebView-2 dataset
(minimum threshold=0.05%).

ETRI Journal, Volume 32, Number 5, October 2010 Chowdhury Farhan Ahmed et al. 685

VI. Conclusion

In this paper, we proposed a novel framework for mining
high-utility sequential patterns. Our proposed framework
considers both internal and external utilities of a sequence and
introduces a new measure, SeqUtility, to calculate the utility
value of a sequence. It also defines the high-utility sequential
patterns and the problem of mining high-utility sequential
patterns. Furthermore, we proposed two new algorithms, UL
and US, for mining high-utility sequential patterns. Of the two
algorithms, UL is simpler and more straightforward for
discovering high-utility sequential patterns. However, it suffers
from the level-wise candidate generation-and-test problem and
needs several database scans. The second algorithm, US,
solves these problems by exploiting a sequential pattern growth
approach. It generates a small number of candidates and needs
a maximum of three database scans. Extensive performance
analyses showed that our algorithms are very efficient and
scalable for mining high-utility sequential patterns in sequence
databases.

References

[1] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int. Conf. Data Eng., 1995, pp. 3-14.

[2] R. Srikant and R. Agrawal, “Mining Sequential Patterns:
Generalizations and Performance Improvements,” Proc. 5th Int.
Conf. Extending Database Technol., 1996, pp. 3-17.

[3] M.J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent
Sequences,” Mach. Learning, vol. 42, no. 1-2, Jan. 2001, pp. 31-
60.

[4] J. Ayres et al., “Sequential Pattern Mining Using a Bitmap
Representation,” Proc. 8th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2002, pp. 429-435.

[5] J. Pei et al., “Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach,” IEEE Trans. Knowl. Data Eng., vol. 16,
no. 11, Oct. 2004, pp. 1424-1440.

[6] J. Pei et al., “PrefixSpan: Mining Sequential Patterns by Prefix-
Projected Growth,” Proc. 17th Int. Conf. Data Eng., 2001, pp.
215-224.

[7] J. Wang, J. Han, and C. Li, “Frequent Closed Sequence Mining
without Candidate Maintenance,” IEEE Trans. Knowl. Data Eng.,
vol. 19, no. 8, 2007, pp. 1042-1056.

[8] H. Yao, H.J. Hamilton, and C.J. Butz, “A Foundational Approach
to Mining Itemset Utilities from Databases,” Proc. 3rd SIAM Int.
Conf. Data Mining, 2004, pp. 482-486.

[9] H. Yao and H.J. Hamilton, “Mining Itemset Utilities from
Transaction Databases,” Data Knowl. Eng., vol. 59, no. 3, 2006,
pp. 603-626.

[10] Y. Liu, W.K. Liao, and A. Choudhary, “A Two Phase Algorithm

for Fast Discovery of High Utility of Itemsets,” Proc. 9th Pacific-
Asia Conf. Knowl. Discovery Data Mining , 2005, pp. 689-695.

[11] C.F. Ahmed et al., “An Efficient Candidate Pruning Technique for
HUP Mining,” Proc.13th Pacific-Asia Conf. Knowl. Discovery
Data Mining, 2009, pp. 749-756.

[12] Y.C. Li, J.S. Yeh, and C.C. Chang, “Isolated Items Discarding
Strategy for Discovering High Utility Itemsets,” Data Knowl.
Eng., vol. 64, no. 1, 2008, pp. 198-217.

[13] C.F. Ahmed et al., “Efficient Tree Structures for HUP Mining in
Incremental Databases,” IEEE Trans. Knowl. Data Eng., vol. 21,
no. 12, 2009, pp. 1708-1721.

[14] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 2nd Int. Conf. Very
Large Data Bases, 1994, pp. 487-499.

[15] J. Han et al., “Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree Approach,” Data Mining
Knowl. Discovery, vol. 8, 2004, pp. 53-87.

[16] J. Han et al., “Frequent Pattern Mining: Current Status and Future
Directions,” Data Mining Knowl. Discovery, vol. 15, no. 1, 2007,
pp. 55-86.

[17] M.N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential
Pattern Mining with Regular Expression Constraints,” Proc. 25th
Int. Conf. Very Large Data Bases, 1999, pp. 223-234.

[18] J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with
Constraints in Large Databases,” Proc. 11th Int. Conf. Inform.
Knowl. Management, 2002, pp. 18-25.

[19] U. Yun, “A New Framework for Detecting Weighted Sequential
Patterns in Large Sequence Databases,” Knowl.-Based Syst., vol.
21, no. 2, 2008, pp. 110-122.

[20] U. Yun, “WIS: Weighted Interesting Sequential Pattern Mining
with a Similar Level of Support and/or Weight,” ETRI J., vol. 29,
no. 3, June 2007, pp. 336-352.

[21] C. Kim et al., “SQUIRE: Sequential Pattern Mining with
Quantities,” J. Syst. Software, vol. 80, no. 10, 2007, pp. 1726-
1745.

[22] http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_
mining/datasets/syndata.html

[23] Frequent Itemset Mining Dataset Repository. Available at:
http://fimi.cs.helsinki.fi/data/

[24] Z. Zheng, R. Kohavi, and L. Mason, “Real World Performance of
Association Rule Algorithms,” Proc. 7th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2001, pp. 401-406.

686 Chowdhury Farhan Ahmed et al. ETRI Journal, Volume 32, Number 5, October 2010

Chowdhury Farhan Ahmed received his BS
and MS in computer science from the
University of Dhaka, Bangladesh, in 2000 and
2002, respectively. From 2003 to 2004, he
worked as a faculty member at the Institute of
Information Technology, University of Dhaka,
Bangladesh. Since 2004, he has been working

as a faculty member in the Department of Computer Science and
Engineering, University of Dhaka, Bangladesh. Currently, he is a PhD
candidate in the Department of Computer Engineering at Kyung Hee
University, Rep. of Korea, and expecting to be awarded the PhD in
August, 2010. His research interests are in the areas of data mining and
knowledge discovery.

Syed Khairuzzaman Tanbeer received his BS
in applied physics and electronics and MS in
computer science from the University of Dhaka,
Bangladesh, in 1996 and 1998, respectively. He
received his PhD in computer engineering from
Kyung Hee University, Rep. of Korea, in 2010.
Since 1999, he has been working as a faculty

member in Department of Computer Science and Information
Technology, Islamic University of Technology, Dhaka, Bangladesh.
Currently, he is working as a postdoctoral fellow in the Department of
Computer Engineering, Kyung Hee University, Rep. of Korea. His
research interests include data mining, parallel and distributed mining,
and knowledge discovery.

Byeong-Soo Jeong received his BS in
computer engineering from Seoul National
University, Rep. of Korea, in 1983. He received
his MS in computer science from KAIST,
Daejeon, Rep. of Korea, in 1985, and his PhD in
computer science from the Georgia Institute of
Technology, Atlanta, USA, in 1995. In 1996, he

joined the faculty at Kyung Hee University, Rep. of Korea, where he is
now a professor at the College of Electronics and Information. From
1985 to 1989, he was on the research staff at Data Communications
Corp., Rep. of Korea. From 2003 to 2004, he was a visiting scholar at
the Georgia Institute of Technology, Atlanta. His research interests
include database systems, data mining, and mobile computing.

