• 제목/요약/키워드: pathway editor

검색결과 4건 처리시간 0.022초

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

바이오패스웨이를 위한 지식 표현 시스템 (UniPath: A Knowledge Representation System for Biopathways)

  • 이민수;박승수;강성희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.343-352
    • /
    • 2004
  • 최근 생물정보학의 발전과 함께 생물 관련 정보들이 기하급수적으로 증가하고 있다 연구 대상 도 DNA, RNA, 단백질에서 더 나아가 이들의 상호작용 및 조절 메커니즘에 의해 기능들이 어떻게 수행되는 지에 관한 바이오패스웨이까지 포함하게 되었다. 바이오패스웨이는 광대한 양의 정보를 포괄하며 구성체 사이의 유기적 관계를 나타내고 있는 것이므로 이를 컴퓨터로 처리하기 위해서는 보다 명료하며 직관적인 표현이 요구된다. 그러나 기존 시스템에서 사용하는 표기법들은 명료하게 해석될 수 없는 경우가 많고 표현 가능한 영역이 특정 한 단면에만 국한되어 있으며 같은 정보를 표현하여도 시스템마다 표현 레벨과 방식이 달라 시스템 확장 및 통합이 어려운 상황이다. 본 논문에서는 다양한 종류의 바이오패스웨이 지식을 체계적인 단일 표기법을 사용하여 보다 명료하고 효율적으로 표현하며 단일화되고 통일된 UniPath 표기법을 제안하였다. 또한 이 표기법을 적용하여 바이오패스웨이 지식을 그래프 형태로 편집함으로써 그 정보를 등록하며 XML 포맷으로 쉽게 변환할 수 있는 프레임 기반 지식 표현 시스템을 설계하고 실제 데이타에 적용함으로써 타당성을 검증하였다.

J2.5dPathway: A 2.5D Visualization Tool to Display Selected Nodes in Biological Pathways, in Parallel Planes

  • Ham, Sung-Il;Song, Eun-Ha;Yang, San-Duk;Thong, Chin-Ting;Rhie, Arang;Galbadrakh, Bulgan;Lee, Kyung-Eun;Park, Hyun-Seok;Lee, San-Ho
    • Genomics & Informatics
    • /
    • 제7권3호
    • /
    • pp.171-174
    • /
    • 2009
  • The characteristics of metabolic pathways make them particularly amenable to layered graph drawing methods. This paper presents a visual Java-based tool for drawing and annotating biological pathways in two- and a-half dimensions (2.5D) as an alternative to three-dimensional (3D) visualizations. Such visualization allows user to display different groups of clustered nodes, in different parallel planes, and to see a detailed view of a group of objects in focus and its place in the context of the whole system. This tool is an extended version of J2dPathway.

CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution

  • Rahul Mahadev Shelake;Dibyajyoti Pramanik;Jae-Yean Kim
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.30-39
    • /
    • 2024
  • Directed evolution (DE) of desired locus by targeted random mutagenesis (TRM) tools is a powerful approach for generating genetic variations with novel or improved functions, particularly in complex genomes. TRM-based DE involves developing a mutant library of targeted DNA sequences and screening the variants for the desired properties. However, DE methods have for a long time been confined to bacteria and yeasts. Lately, CRISPR/Cas and DNA deaminase-based tools that circumvent enduring barriers such as longer life cycle, small library sizes, and low mutation rates have been developed to facilitate DE in native genetic environments of multicellular organisms. Notably, deaminase-based base editing-TRM (BE-TRM) tools have greatly expanded the scope and efficiency of DE schemes by enabling base substitutions and randomization of targeted DNA sequences. BE-TRM tools provide a robust platform for the continuous molecular evolution of desired proteins, metabolic pathway engineering, creation of a mutant library of desired locus to evolve novel functions, and other applications, such as predicting mutants conferring antibiotic resistance. This review provides timely updates on the recent advances in BE-TRM tools for DE, their applications in biology, and future directions for further improvements.