• 제목/요약/키워드: pathological responses

검색결과 94건 처리시간 0.025초

꿀벌의 독에 의한 생쥐 피부의 조직병리학적 및 미세구조적 변화 (Histopathological and Fine Structural Changes in Mouse Skin after Injection of Honeybee Venom)

  • 신상희;정문진;문명진
    • Applied Microscopy
    • /
    • 제27권2호
    • /
    • pp.145-153
    • /
    • 1997
  • 꿀벌(Apis mellifera)의 독에 의해 야기되는 포유동물 피부의 조직병리학적 및 미세구조적 변화와 그 수복과정을 확인하기 위하여 실험용 생쥐의 피부에 직침법으로 꿀벌의 독을 주입한 후, 회복된 시점까지 일정시간 간격으로 조직의 표본을 제작하여 광학 및 전자현미경으로 관찰하였다. 독 주입 직후의 표본에서는 표피의 상피세포와 진피의 결합조직에서 현저한 염증반응이 유도되었고, 일부세포의 괴사가 관찰되었다. 고배율의 전자현미경상에서 교원섬유의 직경이 크게 증가되었으며, 면역 단백물질로 추정되는 전자밀도가 높은 grain의 침착이 확인되었다. 이러한 조직병리현상은 독 주입 후 12시간이 경과된 조직의 표본에서 서서히 회복되는 것으로 관찰되었다. 봉침 주위 피부조직의 조직학적 및 미세구조적 변화는 수 일간 지속되었으나, 병리학적 반응은 3일 이내에 거의 거의 소멸되는 것으로 관찰되었다. 또한 생쥐 피부에 대한 꿀벌 독의 병리반응은 다른 절지동물의 독에 비하여 비교적 경미한 것으로 확인되었다.

  • PDF

돼지 위축성 비염백신의 효과에 관한 연구 (Efficacy of atropic rhinitis vaccine in pigs)

  • 지영철;로 승;한정희;한태욱
    • 대한수의학회지
    • /
    • 제40권4호
    • /
    • pp.707-717
    • /
    • 2000
  • Atropic rhinitis (AR) is one of major respiratory diseases in pigs. AR causes a great economic losses and is considered to be a multifactorial disease in which herd management, heredity, and environment. Several vaccines against have been developed commercially and used in pig farms but the efficacy of each vaccine is still questionable. In this study, one of commercial AR vaccines, which contains inactivated Bordetella bronchiseptica, Pasteurella multocida type D and their toxoid was evaluated for vaccine efficacy by challenge test. Twenty piglets were divided into four groups as follows; group I was piglets from vaccinated sows (twice before parturition); group II was piglets from vaccinated sows (same as group I) and were vaccinated at 1 day old; group III and IV were piglets without any vaccination. Groups I, II, and III were challenged by intranasal instillation of $5.3{\times}10^7$ CFU of B bronchiseptica twice and $1{\times}10^9$ CFU of P multocida five times. Group IV was control group without any vaccination and any challenge. We compared serological results, recovery rate of P multocida by polymerase chain reaction, clinical signs and pathological findings between vaccinated groups and unvaccinated groups for efficacy of the vaccine, Serological responses against B bronchiseptica and toxigenic P multocida type D were not showed evident discrepancy between vaccinated groups and unvaccinated groups assuming that the antibody responses against the vaccine is very delayed. However, growth rate, clinical signs and snout lesion grading in vaccinated groups showed more favorable than those in unvaccinated group. Therefore, AR vaccination in this study is considered to be effective in the prevention of AR in pigs.

  • PDF

Modulation of Glial and Neuronal Migration by Lipocalin-2 in Zebrafish

  • Kim, Ho;Lee, Shin-Rye;Park, Hae-Chul;Lee, Won-Ha;Lee, Myung-Shik;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.342-347
    • /
    • 2011
  • Background: Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology. Methods: Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro. Results: Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS. Conclusion: Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

Matrix Metalloproteinase-8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson's Disease Model Mice

  • Kim, Taewoo;Jeon, Jeha;Park, Jin-Sun;Park, Yeongwon;Kim, Jooeui;Noh, Haneul;Kim, Hee-Sun;Seo, Hyemyung
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.483-491
    • /
    • 2021
  • Parkinson's disease (PD) is a neurodegenerative disorder that involves the loss of dopaminergic neurons in the substantia nigra (SN). Matrix metalloproteinases-8 (MMP-8), neutrophil collagenase, is a functional player in the progressive pathology of various inflammatory disorders. In this study, we administered an MMP-8 inhibitor (MMP-8i) in Leucine-rich repeat kinase 2 (LRRK2) G2019S transgenic mice, to determine the effects of MMP-8i on PD pathology. We observed a significant increase of ionized calcium-binding adapter molecule 1 (Iba1)-positive activated microglia in the striatum of LRRK2 G2019S mice compared to normal control mice, indicating enhanced neuro-inflammatory responses. The increased number of Iba1-positive activated microglia in LRRK2 G2019S PD mice was down-regulated by systemic administration of MMP-8i. Interestingly, this LRRK2 G2019S PD mice showed significantly reduced size of cell body area of tyrosine hydroxylase (TH) positive neurons in SN region and MMP-8i significantly recovered cellular atrophy shown in PD model indicating distinct neuro-protective effects of MMP-8i. Furthermore, MMP-8i administration markedly improved behavioral abnormalities of motor balancing coordination in rota-rod test in LRRK2 G2019S mice. These data suggest that MMP-8i attenuates the pathological symptoms of PD through anti-inflammatory processes.

Ginsenoside Rg3 ameliorates allergic airway inflammation and oxidative stress in mice

  • Huang, Wen-Chung;Huang, Tse-Hung;Yeh, Kuo-Wei;Chen, Ya-Ling;Shen, Szu-Chuan;Liou, Chian-Jiun
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.654-664
    • /
    • 2021
  • Background: Ginsenoside Rg3, isolated from Panax ginseng, has anti-inflammatory and anti-tumor activities. It is known to reduce inflammation in acute lung injury in mice, and to reduce the expression of inflammatory cytokines and COX-2 in human asthmatic airway epithelium. In this study, we attempted to determine whether ginsenoside Rg3 inhibits airway inflammation, oxidative stress, and airway hyperresponsiveness (AHR) in the lungs of asthmatic mice. We also investigated its effects on oxidative stress and the inflammatory response in tracheal epithelial cells. Methods: Asthma symptoms were induced in female BALB/c mice sensitized with ovalbumin (OVA). Mice were divided into five groups: normal controls, OVA-induced asthmatic controls, and asthmatic mice treated with ginsenoside Rg3 or prednisolone by intraperitoneal injection. Inflammatory BEAS-2B cells (human tracheal epithelial cells) treated with ginsenoside Rg3 to investigate its effects on inflammatory cytokines and oxidative responses. Results: Ginsenoside Rg3 treatment significantly reduced eosinophil infiltration, oxidative responses, airway inflammation, and AHR in the lungs of asthmatic mice. Ginsenoside Rg3 reduced Th2 cytokine and chemokine levels in bronchoalveolar lavage fluids and lung. Inflammatory BEAS-2B cells treated with ginsenoside Rg3 reduced the eotaxin and pro-inflammatory cytokine expressions, and monocyte adherence to BEAS-2B cells was significantly reduced as a result of decreased ICAM-1 expression. Furthermore, ginsenoside Rg3 reduced the expression of reactive oxygen species in inflammatory BEAS-2B cells. Conclusion: Ginsenoside Rg3 is a potential immunomodulator that can ameliorate pathological features of asthma by decreasing oxidative stress and inflammation

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • 제62권1호
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

스트레스의 신경생물학적 이해 (Neural Circuits Mediating Stress)

  • 유범희;우종민
    • 정신신체의학
    • /
    • 제9권1호
    • /
    • pp.81-92
    • /
    • 2001
  • 스트레스는 여러 가지 정신질환의 병태생리와 관련되는 것으로 알려졌다. 최근 여러 가지 동물 모델이 제시되고 뇌에 대한 연구가 활발해지면서 스트레스의 선경생물학적 기전에 대해 많은 사실이 밝혀지고 있다. 저자들은 동물과 사람을 대상으로 스트레스가 지각되고 대뇌에서 처리되고 신경내분비적 반응으로 전환되는 경로를 밝히고자 했던 최근의 연구들을 고찰하였다. 과거 변연계-시상하부-뇌하수체-부신 축(LHPA axis)과 자율신경계가 스트레스반응의 신경생물학적 담당자로 가장 많이 연구되어 왔으나, 최근에는 노르에피네프린(NE), 세로토닌, GABA/Glutamate, 도파민, 아세틸콜린 등의 신경전달물질과 부신피질자극호르몬방출인자(CRF), arginine vasopressin. glucocorticoid 등의 신경호르몬이 상호작용을 하면서 스트레스반응에 관계되는 것으로 알려지고 있다. 이러한 대뇌의 신경전달체계는 LHPA축과 유기적으로 연관되면서 스트레스반응을 매개하며, 구조적으로도 LHPA축은 해마, 편도 등 다양한 대뇌 부위와 연결된다. LHPA축은 이렇게 중층적으로 조절되는데, 여기에 생기는 이상은 만성 스트레스나 우울증 등 병적 상태와 관련된다. CRF는 LHPA축의 호르몬 역할 이외에 대뇌의 광범위한 부위에 분포하면서 신경전달물질로서 기능하며 다양한 스트레스반응을 매개한다. 스트레스를 주변 자율신경계가 활성화되는데, 청색반점에서 기시하는 NE계가 직접 자극되어 카테콜아민을 분비하기도 하지만, CRF나 다른 신경전달계가 먼저 자극되면서 간접적으로 활성화되기도 한다. 특히 CRF와 NE계는 서로 자극시키는 feed-forward 상호작용을 하며, 이것이 생체가 외부환경의 도전에 맞서 내분비계 뿐만 아니라 중추신경계를 동원하는 데 중요한 역할을 할것으로 보인다. 또한 CRF-NE 상호작용은 불안이나 우울 등 비정상적 스트레스반응의 병태생리를 이해하는 데 중요한 역할을 할 것으로 시사된다. 스트레스반응은 구조적, 신경화학적, 유전적 수준의 다양한 신경생물학적 작용을 통해 일어나며, 이에 대한 연구는 스트레스반응의 병태생리를 밝히고 불안장애, 기분장애 등 정신질환의 원인 규명과 치료에도 크게 기여할 것으로 보인다.

  • PDF

Contribution of TLR2 to the Initiation of Ganglioside-triggered Inflammatory Signaling

  • Yoon, Hee Jung;Jeon, Sae Bom;Suk, Kyoungho;Choi, Dong-Kug;Hong, Young-Joon;Park, Eun Jung
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.99-104
    • /
    • 2008
  • Gangliosides, sialic acid-containing glycosphingolipids, are implicated in many neuronal diseases, but the precise molecular mechanisms underlying their pathological activities are poorly understood. Here we report that TLR2 participates in the initiation of ganglioside-triggered inflammatory signaling responses. Using FACS analysis and immunofluorescence microscopy, we found that gangliosides rapidly enhanced the cell surface expression of TLR2 in microglia, while reducing that of TLR4. The ganglioside-dependent increase of TLR2 expression was also observed at the messenger and protein levels. We also showed that gangliosides stimulate the interaction of TLR2 with Myd88, an adaptor for TLRs, and obtained evidence that lipid raft formation is closely associated with the ganglioside-induced activation of TLR2 and subsequent inflammatory signaling. These results collectively suggest that TLR2 contributes to the ability of gangliosides to cause inflammatory conditions in the brain.

Gene Expression Profile in Iprobenfos Exposed Medaka Fish by Microarray Analysis

  • Woo, Seon-Ock;Son, Sung-Hee;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.132-137
    • /
    • 2008
  • Differential gene expression profiling was carried out in the hepatic tissue of medaka fish, Oryzias latipes, after exposure to an organophosphorus pesticide (OPP), Iprobenfos (IBP), a widely used pesticide in agri- and fish-culture, using a medaka cDNA micro array. Twenty six kinds of differentially expressed candidate genes, with 15 and 11 induced and repressed in their gene expressions, respectively, were associated with cytoskeleton (3.8%), development (7.7%), immune (7.7%), metabolism (30.8%), nucleic acid/protein binding (42.3%) and reproduction (7.7%). Of these genes, changes at the transcription level of five were re-evaluated by real-time quantitative PCR (qRT-PCR). Considering the known function of authentic genes, the effects of IBP on the biological activity and pathological aspects in medaka fish were discussed. The identified genes could be used as molecular biomarkers for biological responses to OPPs contamination in an aquatic environment.

치수보호용 제재가 성견 치수조직에 미치는 영향에 관한 병리조직학적 연구 (A HISTOPATHOLOGICAL STUDY OF PULP TISSUE REACTION TO INTERMEDIATE RESTORATIVE MATERNAL IN YOUNG ADULT DOG'S TEETH)

  • 최돈옥
    • 대한소아치과학회지
    • /
    • 제10권1호
    • /
    • pp.35-45
    • /
    • 1983
  • This study was undertaken to evaluate the pulpal responses to the intermediate restorative materials such as Zinc phosphate cement, Polycarboxylate cement, IRM (zinc oxide eugenol cement), Dycal, Life, Cresatin, and Fluoride in caivties which were cut with high speed instrument. 5 dogs were used as experimental animals and devided into 8 groups. The intervals of observaobservation ranged 3 days, 1, 3, 4, 8 weeks after experiment respectively. The specimens were fixed with 10% formalin and decalcified in 5% nitric acid. All slides were stained with hemtoxylin-eosin and examined histopathologically. The results were as follows: 1. In control group, severe vacuolar degeneration and atrophy of odontoblasts were seen in 3 days, hemorrhage and congestion continued until 8 weeks. Necrosis of odontoblastic layer was seen in zinc phosphate cement group and polycarboxylate cement group. 2. In dycal group, vacuolar degeneration and atrophy of odontoblast were not seen. but in Life group, these were seen in 3 days and partially continued until 3 weeks. In 4 weeks, regeneration of odontoblast was occured. 3. In Crcsatin group, there was no pathosis except odontoblastic displacement. In Fluoride group, vacuolar degeneration of odontoblast was seen and soon disappeared. As compared with control group, pathological change of the pulp tissue in experimental group were decreased after amalgam restoration.

  • PDF