Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.181

Matrix Metalloproteinase-8 Inhibitor Ameliorates Inflammatory Responses and Behavioral Deficits in LRRK2 G2019S Parkinson's Disease Model Mice  

Kim, Taewoo (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Jeon, Jeha (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Park, Jin-Sun (Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University)
Park, Yeongwon (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Kim, Jooeui (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Noh, Haneul (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Kim, Hee-Sun (Department of Molecular Medicine and Medical Research Institute, School of Medicine, Ewha Womans University)
Seo, Hyemyung (Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University)
Publication Information
Biomolecules & Therapeutics / v.29, no.5, 2021 , pp. 483-491 More about this Journal
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that involves the loss of dopaminergic neurons in the substantia nigra (SN). Matrix metalloproteinases-8 (MMP-8), neutrophil collagenase, is a functional player in the progressive pathology of various inflammatory disorders. In this study, we administered an MMP-8 inhibitor (MMP-8i) in Leucine-rich repeat kinase 2 (LRRK2) G2019S transgenic mice, to determine the effects of MMP-8i on PD pathology. We observed a significant increase of ionized calcium-binding adapter molecule 1 (Iba1)-positive activated microglia in the striatum of LRRK2 G2019S mice compared to normal control mice, indicating enhanced neuro-inflammatory responses. The increased number of Iba1-positive activated microglia in LRRK2 G2019S PD mice was down-regulated by systemic administration of MMP-8i. Interestingly, this LRRK2 G2019S PD mice showed significantly reduced size of cell body area of tyrosine hydroxylase (TH) positive neurons in SN region and MMP-8i significantly recovered cellular atrophy shown in PD model indicating distinct neuro-protective effects of MMP-8i. Furthermore, MMP-8i administration markedly improved behavioral abnormalities of motor balancing coordination in rota-rod test in LRRK2 G2019S mice. These data suggest that MMP-8i attenuates the pathological symptoms of PD through anti-inflammatory processes.
Keywords
Parkinson's disease (PD); Matrix metalloproteinase-8 (MMP-8); Neuro-inflammation; Neuroprotection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Garcia-Prieto, E., Gonzalez-Lopez, A., Cabrera, S., Astudillo, A., Gutierrez-Fernandez, A., Fanjul-Fernandez, M., Batalla-Solis, E., Puente, X. S., Fueyo, A., Lopez-Otin, C. and Albaiceta, G. M. (2010) Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS ONE 5, e13242.   DOI
2 Ghosh, A., Roy, A., Liu, X., Kordower, J. H., Mufson, E. J., Hartley, D. M., Ghosh, S., Mosley, R. L., Gendelman, H. E. and Pahan, K. (2007) Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease. Proc. Natl. Acad. Sci. U.S.A. 104, 18754-18759.   DOI
3 Gutierrez-Fernandez, A., Inada, M., Balbin, M., Fueyo, A., Pitiot, A. S., Astudillo, A., Hirose, K., Hirata, M., Shapiro, S. D., Noel, A., Werb, Z., Krane, S. M., Lopez-Otin, C. and Puente, X. S. (2007) Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). FASEB J. 21, 2580-2591.   DOI
4 Han, J. E., Lee, E. J., Moon, E., Ryu, J. H., Choi, J. W. and Kim, H. S. (2016) Matrix metalloproteinase-8 is a novel pathogenetic factor in focal cerebral ischemia. Mol. Neurobiol. 53, 231-239.   DOI
5 Hirsch, E., Graybiel, A. M. and Agid, Y. A. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345-348.   DOI
6 Hirsch, E. C., Orieux, G., Muriel, M. P., Francois, C. and Feger, J. (2003) Nondopaminergic neurons in Parkinson's disease. Adv. Neurol. 91, 29-37.
7 Kallai, J., Makany, T., Csatho, A., Karadi, K., Horvath, D., Kovacs-Labadi, B., Jarai, R., Nadel, L. and Jacobs, J. W. (2007) Cognitive and affective aspects of thigmotaxis strategy in humans. Behav. Neurosci. 121, 21-30.   DOI
8 Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J., Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z. and Cai, H. (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron 64, 807-827.   DOI
9 Liu, B. (2006) Modulation of microglial pro-inflammatory and neurotoxic activity for the treatment of Parkinson's disease. AAPS J. 8, E606-E621.   DOI
10 Lorenzl, S., Albers, D. S., Narr, S., Chirichigno, J. and Beal, M. F. (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson's disease. Exp. Neurol. 178, 13-20.   DOI
11 Balbin, M., Fueyo, A., Tester, A. M., Pendas, A. M., Pitiot, A. S., Astudillo, A., Overall, C. M., Shapiro, S. D. and Lopez-Otin, C. (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat. Genet. 35, 252-257.   DOI
12 Melrose, H. L., Dachsel, J. C., Behrouz, B., Lincoln, S. J., Yue, M., Hinkle, K. M., Kent, C. B., Korvatska, E., Taylor, J. P., Witten, L., Liang, Y. Q., Beevers, J. E., Boules, M., Dugger, B. N., Serna, V. A., Gaukhman, A., Yu, X., Castanedes-Casey, M., Braithwaite, A. T., Ogholikhan, S., Yu, N., Bass, D., Tyndall, G., Schellenberg, G. D., Dickson, D. W., Janus, C. and Farrer, M. J. (2010) Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol. Dis. 40, 503-517.   DOI
13 Kim, Y. S., Choi, D. H., Block, M. L., Lorenzl, S., Yang, L., Kim, Y. J., Sugama, S., Cho, B. P., Hwang, O., Browne, S. E., Kim, S. Y., Hong, J. S., Beal, M. F. and Joh, T. H. (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J. 21, 179-187.   DOI
14 Mohammad, G. and Kowluru, R. A. (2010) Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction. Lab. Invest. 90, 1365-1372.   DOI
15 Abdullah Thani, N. A., Sallis, B., Nuttall, R., Schubert, F. R., Ahsan, M., Davies, D., Purewal, S., Cooper, A. and Rooprai, H. K. (2012) Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncol. Rep. 28, 1435-1442.   DOI
16 Vayrynen, J. P., Vornanen, J., Tervahartiala, T., Sorsa, T., Bloigu, R., Salo, T., Tuomisto, A. and Makinen, M. J. (2012) Serum MMP-8 levels increase in colorectal cancer and correlate with disease course and inflammatory properties of primary tumors. Int. J. Cancer 131, E463-E474.   DOI
17 Sung, J. Y., Park, S. M., Lee, C. H., Um, J. W., Lee, H. J., Kim, J., Oh, Y. J., Lee, S. T., Paik, S. R. and Chung, K. C. (2005) Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases. J. Biol. Chem. 280, 25216-25224.   DOI
18 van der Zijl, N. J., Hanemaaijer, R., Tushuizen, M. E., Schindhelm, R. K., Boerop, J., Rustemeijer, C., Bilo, H. J., Verheijen, J. H. and Diamant, M. (2010) Urinary matrix metalloproteinase-8 and -9 activities in type 2 diabetic subjects: a marker of incipient diabetic nephropathy? Clin. Biochem. 43, 635-639.   DOI
19 Van Lint, P., Wielockx, B., Puimege, L., Noel, A., Lopez-Otin, C. and Libert, C. (2005) Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis. J. Immunol. 175, 7642-7649.   DOI
20 Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N. and Braak, E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197-211.   DOI
21 Folgueras, A. R., Fueyo, A., Garcia-Suarez, O., Cox, J., Astudillo, A., Tortorella, P., Campestre, C., Gutierrez-Fernandez, A., Fanjul-Fernandez, M., Pennington, C. J., Edwards, D. R., Overall, C. M. and Lopez-Otin, C. (2008) Collagenase-2 deficiency or inhibition impairs experimental autoimmune encephalomyelitis in mice. J. Biol. Chem. 283, 9465-9474.   DOI
22 Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R. and Maier, S. F. (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun. 21, 47-59.   DOI
23 Bouhours-Nouet, N., May-Panloup, P., Coutant, R., de Casson, F. B., Descamps, P., Douay, O., Reynier, P., Ritz, P., Malthiery, Y. and Simard, G. (2005) Maternal smoking is associated with mitochondrial DNA depletion and respiratory chain complex III deficiency in placenta. Am. J. Physiol. Endocrinol. Metab. 288, E171-E177.   DOI
24 Moon, M., Kim, H. G., Hwang, L., Seo, J. H., Kim, S., Hwang, S., Kim, S., Lee, D., Chung, H., Oh, M. S., Lee, K. T. and Park, S. (2009) Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease by blocking microglial activation. Neurotox. Res. 15, 332-347.   DOI
25 Zitka, O., Skalickova, S., Gumulec, J., Masarik, M., Adam, V., Hubalek, J., Trnkova, L., Kruseova, J., Eckschlager, T. and Kizek, R. (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 4, 1247-1253.   DOI
26 Sorsa, T., Tervahartiala, T., Leppilahti, J., Hernandez, M., Gamonal, J., Tuomainen, A. M., Lauhio, A., Pussinen, P. J. and Mantyla, P. (2011) Collagenase-2 (MMP-8) as a point-of-care biomarker in periodontitis and cardiovascular diseases. Therapeutic response to non-antimicrobial properties of tetracyclines. Pharmacol. Res. 63, 108-113.   DOI
27 Lyons, A., Downer, E. J., Crotty, S., Nolan, Y. M., Mills, K. H. and Lynch, M. A. (2007) CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 27, 8309-8313.   DOI
28 Nelson, K. K. and Melendez, J. A. (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic. Biol. Med. 37, 768-784.   DOI
29 Orenstein, S. J., Kuo, S. H., Tasset, I., Arias, E., Koga, H., Fernandez-Carasa, I., Cortes, E., Honig, L. S., Dauer, W., Consiglio, A., Raya, A., Sulzer, D. and Cuervo, A. M. (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat. Neurosci. 16, 394-406.   DOI
30 Rooprai, H. K., Rucklidge, G. J., Panou, C. and Pilkington, G. J. (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br. J. Cancer 82, 52-55.   DOI
31 Gueders, M. M., Balbin, M., Rocks, N., Foidart, J. M., Gosset, P., Louis, R., Shapiro, S., Lopez-Otin, C., Noel, A. and Cataldo, D. D. (2005) Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation. J. Immunol. 175, 2589-2597.   DOI
32 Jeon, J., Kim, W., Jang, J., Isacson, O. and Seo, H. (2016) Gene therapy by proteasome activator, PA28gamma, improves motor coordination and proteasome function in Huntington's disease YAC128 mice. Neuroscience 324, 20-28.   DOI
33 Levin, J., Giese, A., Boetzel, K., Israel, L., Hogen, T., Nubling, G., Kretzschmar, H. and Lorenzl, S. (2009) Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp. Neurol. 215, 201-208.   DOI
34 Lorenzl, S., Calingasan, N., Yang, L., Albers, D. S., Shugama, S., Gregorio, J., Krell, H. W., Chirichigno, J., Joh, T. and Beal, M. F. (2004) Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromolecular Med. 5, 119-132.   DOI
35 Seo, H., Sonntag, K. C. and Isacson, O. (2004) Generalized brain and skin proteasome inhibition in Huntington's disease. Ann. Neurol. 56, 319-328.   DOI
36 Kumar, H., Jo, M. J., Choi, H., Muttigi, M. S., Shon, S., Kim, B. J., Lee, S. H. and Han, I. B. (2018) Matrix metalloproteinase-8 inhibition prevents disruption of blood-spinal cord barrier and attenuates inflammation in rat model of spinal cord injury. Mol. Neurobiol. 55, 2577-2590.   DOI
37 Schubert-Unkmeir, A., Konrad, C., Slanina, H., Czapek, F., Hebling, S. and Frosch, M. (2010) Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog. 6, e1000874.   DOI
38 Seo, H., Kim, W. and Isacson, O. (2008) Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients. Hum. Mol. Genet. 17, 3144-3153.   DOI
39 Smith, W. W., Pei, Z., Jiang, H., Dawson, V. L., Dawson, T. M. and Ross, C. A. (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 9, 1231-1233.   DOI
40 Ros-Bernal, F., Hunot, S., Herrero, M. T., Parnadeau, S., Corvol, J. C., Lu, L., Alvarez-Fischer, D., Carrillo-de Sauvage, M. A., Saurini, F., Coussieu, C., Kinugawa, K., Prigent, A., Hoglinger, G., Hamon, M., Tronche, F., Hirsch, E. C. and Vyas, S. (2011) Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc. Natl. Acad. Sci. U.S.A. 108, 6632-6637.   DOI
41 Leem, Y. H., Park, J. S., Park, J. E., Kim, D. Y., Kang, J. L. and Kim, H. S. (2020) Papaverine inhibits α-synuclein aggregation by modulating neuroinflammation and matrix metalloproteinase-3 expression in the subacute MPTP/P mouse model of Parkinson's disease. Biomed. Pharmacother. 130, 110576.   DOI
42 Solan, P. D., Dunsmore, K. E., Denenberg, A. G., Odoms, K., Zingarelli, B. and Wong, H. R. (2012) A novel role for matrix metalloproteinase-8 in sepsis. Crit. Care Med. 40, 379-387.   DOI
43 Lee, E. J., Park, J. S., Lee, Y. Y., Kim, D. Y., Kang, J. L. and Kim, H. S. (2018) Anti-inflammatory and anti-oxidant mechanisms of an MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary astrocytes: involvement of NF-κB, Nrf2, and PPAR-γ signaling pathways. J. Neuroinflammation 15, 326.   DOI
44 Lee, E. J., Woo, M. S., Moon, P. G., Baek, M. C., Choi, I. Y., Kim, W. K., Junn, E. and Kim, H. S. (2010) Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J. Immunol. 185, 615-623.   DOI
45 Li, C. H., Cheng, Y. W., Liao, P. L., Yang, Y. T. and Kang, J. J. (2010a) Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol. Sci. 116, 140-150.   DOI
46 Li, X., Patel, J. C., Wang, J., Avshalumov, M. V., Nicholson, C., Buxbaum, J. D., Elder, G. A., Rice, M. E. and Yue, Z. (2010b) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J. Neurosci. 30, 1788-1797.   DOI
47 Lee, E. J., Han, J. E., Woo, M. S., Shin, J. A., Park, E. M., Kang, J. L., Moon, P. G., Baek, M. C., Son, W. S., Ko, Y. T., Choi, J. W. and Kim, H. S. (2014) Matrix metalloproteinase-8 plays a pivotal role in neuroinflammation by modulating TNF-alpha activation. J. Immunol. 193, 2384-2393.   DOI