• Title/Summary/Keyword: pathogenic diversity

Search Result 92, Processing Time 0.022 seconds

The Differences between Luminal Microbiota and Mucosal Microbiota in Mice

  • Wu, Minna;Li, Puze;Li, Jianmin;An, Yunying;Wang, Mingyong;Zhong, Genshen
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.287-295
    • /
    • 2020
  • The differences between luminal microbiota (LM) and mucosal microbiota (MAM) were little known, especially in duodenum. In this study, LM and MAM in colon and duodenum of mice were investigated through 16S rRNA high-throughput sequencing. The lowest bacterial diversity and evenness were observed in duodenal LM (D_LM), followed by duodenal MAM (D_MAM). Meanwhile, the bacterial diversity and evenness were obviously increased in D_MAM than these in D_LM, while no significant difference was observed between colonic MAM (C_MAM) and colonic LM (C_LM). PCoA analysis also showed that bacterial communities of LM and MAM in duodenum were completely separated, while these in colon overlapped partly. The ratio of Firmicutes to Bacteroidetes (F/B) in D_MAM was significantly higher than that in D_LM. Lactobacillus was largely enriched and was the characteristic bacteria in D_LM. The characteristic bacteria in D_MAM were Turicibacter, Parasutterella, Marvinbryantia and Bifidobacterium, while in C_LM they were Ruminiclostridium_6, Ruminiclostridium_9, Ruminococcaceae_UCG_007 and Lachnospiraceae_UCG_010, and in C_MAM they were Lachnospiraceae_NK4A136, Mucispirillum, Alistipes, Ruminiclostridium and Odoribacter. The networks showed that more interactions existed in colonic microbiota (24 nodes and 74 edges) than in duodenal microbiota (17 nodes and 29 edges). The 16S rDNA function prediction results indicated that bigger differences of function exist between LM and MAM in duodenum than these in colon. In conclusion, microbiota from intestinal luminal content and mucosa were different both in colon and in duodenum, and bacteria in colon interacted with each other much more closely than those in duodenum.

Evaluation of Pathogenic Variability Based on Leaf Blotch Disease Development Components of Bipolaris sorokiniana in Triticum aestivum and Agroclimatic Origin

  • Sultana, Sabiha;Adhikary, Sanjoy Kumar;Islam, Md. Monirul;Rahman, Sorder Mohammad Mahbubur
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.93-103
    • /
    • 2018
  • Leaf blotch of wheat caused by Bipolaris sorokiniana is a major constraint to wheat production, causing significant yield reduction resulting in severe economic impact. The present study characterizes to determine and compare pathogenic variability exist/not based on components of leaf blotch disease development and level of aggressiveness due to agroclimatic condition of B. sorokiniana in wheat. A total of 169 virulent isolates of B. sorokiniana isolated from spot blotch infected leaf from different wheat growing agroclimate of Bangladesh. Pathogenic variability was investigated on a susceptible wheat variety 'kanchan' now in Bangladesh. A clear evidence of positive relationship among the components was recorded. From hierarchical cluster analysis five groups were originating among the isolates. It resolved that a large amount of pathogenic diversity exists in Bipolaris sorokiniana. Variation in aggressiveness was found among the isolates from different wheat growing areas. Most virulent isolates BS 24 and BS 33 belonging to High Ganges River Flood Plain agro-climatic zones considered by rice-wheat cropping pattern, hot and humid weather, high land and low organic matter content in soil. Positive relationship was found between pathogenic variability and aggressiveness with agro-climatic condition.

RNA Modification and Its Implication in Plant Pathogenic Fungi

  • Jeon, Junhyun;Lee, Song Hee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.505-511
    • /
    • 2021
  • Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.

Current Classification of the Bacillus pumilus Group Species, the Rubber-Pathogenic Bacteria Causing Trunk Bulges Disease in Malaysia as Assessed by MLSA and Multi rep-PCR Approaches

  • Husni, Ainur Ainiah Azman;Ismail, Siti Izera;Jaafar, Noraini Md.;Zulperi, Dzarifah
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.243-257
    • /
    • 2021
  • Bacillus pumilus is the causal agent of trunk bulges disease affecting rubber and rubberwood quality and yield production. In this study, B. pumilus and other closely related species were included in B. pumilus group, as they shared over 99.5% similarity from 16S rRNA analysis. Multilocus sequence analysis (MLSA) of five housekeeping genes and repetitive elements-based polymerase chain reaction (rep-PCR) using REP, ERIC, and BOX primers conducted to analyze the diversity and systematic relationships of 20 isolates of B. pumilus group from four rubber tree plantations in Peninsular Malaysia (Serdang, Tanah Merah, Baling, and Rawang). Multi rep-PCR results revealed the genetic profiling among the B. pumilus group isolates, while MLSA results showed 98-100% similarity across the 20 isolates of B. pumilus group species. These 20 isolates, formerly established as B. pumilus, were found not to be grouped with B. pumilus. However, being distributed within distinctive groups of the B. pumilus group comprising of two clusters, A and B. Cluster A contained of 17 isolates close to B. altitudinis, whereas Cluster B consisted of three isolates attributed to B. safensis. This is the first MLSA and rep-PCR study on B. pumilus group, which provides an in-depth understanding of the diversity of these rubber-pathogenic isolates in Malaysia.

Microbial Contamination Levels in Porphyra sp. Distributed in Korea (국내 유통 김(Porphyra sp.)의 미생물 오염도 평가)

  • Noh, Bo-Young;Hwang, Sun-Hye;Cho, Yong-Sun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.180-184
    • /
    • 2019
  • Aerobic bacteria, coliforms, Escherichia coli, and pathogenic bacteria were investigated in laver Porphyra sp. samples from various regions of Korea. The mean bacterial counts were $6.9{\pm}0.87log\;CFU/g$ (range 4.0 to 7.7) log CFU/g in dried laver, $2.83{\pm}4.36log\;CFU/g$ in roasted laver, and $4.93{\pm}1.43log\;CFU/g$ in seasoned laver. Coliforms were most abundant (mean count: $2.1{\pm}1.01log\;CFU/g$) in dried laver. No pathogenic bacteria, including Staphylococcus aureus, Salmonella spp. Vibrio parahaemolyticus, or Listeria monocytogenes, were detected in any of the samples. Aerobic microorganisms were the most diverse microorganisms in dried laver. Staphylococcus spp. were predominant, but S. aureus was not detected. Standardization of laver production is necessary to ensure a hygienic product because laver products are often ingested without heating or cooking, and the production process is simple.

Microbiota Analysis and Microbiological Hazard Assessment in Chinese Chive (Allium tuberosum Rottler) Depending on Retail Types

  • Seo, Dong Woo;Yum, Su-jin;Lee, Heoun Reoul;Kim, Seung Min;Jeong, Hee Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • Chinese chive (Allium tuberosum Rottler) has potential risks associated with pathogenic bacterial contamination as it is usually consumed raw. In this study, we investigated the microbiota of Chinese chives purchased from traditional markets and grocery stores in March (Spring) and June (Summer) 2017. Differences in bacterial diversity were observed, and the microbial composition varied across sampling times and sites. In June, potential pathogenic genera, such as Escherichia, Enterobacter, and Pantoea, accounted for a high proportion of the microbiota in samples purchased from the traditional market. A large number of pathogenic bacteria (Acinetobacter lwoffii, Bacillus cereus, Klebsiella pneumoniae, and Serratia marcescens) were detected in the June samples at a relatively high rate. In addition, the influence of the washing treatment on Chinese chive microbiota was analyzed. After storage at 26℃, the washing treatment accelerated the growth of enterohemorrhagic Escherichia coli (EHEC) because it caused dynamic shifts in Chinese chive indigenous microbiota. These results expand our knowledge of the microbiota in Chinese chives and provide data for the prediction and prevention of food-borne illnesses.

Characterization of Sclerospora graminicola Isolates from Pearl Millet for Virulence and Genetic Diversity

  • Pushpavathi B.;Thakur R. P.;Rao K. Chandrashekara;Rao V. P.
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.28-35
    • /
    • 2006
  • Virulence and genetic diversity were studied using 21 isolates of Sclerospora graminicola, the pearl millet downy mildew pathogen collected from major pearl millet growing areas of India. Variability for virulence was determined by inoculating a set of 10 differential hosts with the S. graminicola isolates in a greenhouse. The isolates varied for latent period (6.4 to 11 days), disease incidence (0 to $98\%$), virulence index (0 to 18.7) and oospore-production potential (1 to 4). Among the 21 isolates, Sg 139 (Rajasthan) was the most virulent and Sg 110 (Tamil Nadu) the least virulent. Based on virulence index (disease incidence$\time$slatent $period^{-1}$), the 21 isolates were classified into eight virulence groups. Genetic diversity among isolates was studied using AFLP markers. Based on similarity index of banding pattern, the 21 isolates were clustered into eight genotypic groups. The AFLP groupings, however, did not match with that of the virulence groupings, and these two were found independent. The isolate Sg 139 that remained distinct in both pathogenic and genetic groupings indicated its highly virulent nature. Implications of these results in downy mildew resistance breeding are discussed.

Genetic Diversity of avrBs-like Genes in Three Different Xanthomonas Species Isolated in Korea

  • Oh, Chang-Sik;Lee, Seung-Don;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Plant-pathogenic bacteria including Xanthomonas spp. carry genetic diversity in composition of avirulence genes for interaction with their host plants. Previously, we reported genetic diversity of avirulence genes in X. axonopodis pv. glycines. In this study, we determined genetic diversity of five avirulence genes, avrBs1, avrBs2, avrBs3, avrBs4, and avrRxv, in three other Xanthomonas species isolated in Korea by genomic southern hybridization. Although Korean races of X. campestris pv. vesicatoria that were isolated from year 1995 to 2002 had the same avirulence gene patterns as those that already reported, there was race shift from race 3 to race 1 by acquisition of avrBs3 genes. X. campestris pv. campestris isolated from Chinese cabbage, but not from cabbage or radish, carried two avrBs3 genes, and one of them affected HR-eliciting ability of this bacterium in broccoli. X. oryzae pv. oryzae carried eight to thirteen avrBs3 gene homologs, and this bacterium showed dynamic changes of resistance patterns in rice probably by losing or obtaining avrBs3 genes. These results indicate that avrBs3 gene is more diverse in Xanthomonas spp. than other four avirulence genes and also host ranges of these bacteria can be easily changed by loss or acquisition of avrBs3 genes.

Uncharted Diversity and Ecology of Saprolegniaceae (Oomycota) in Freshwater Environments

  • Bora Nam;Thuong T. T. Nguyen;Hyang Burm Lee;Sang Kyu Park;Young-Joon Choi
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.326-344
    • /
    • 2022
  • The fungal-like family Saprolegniaceae (Oomycota), also called "water mold," includes mostly aquatic saprophytes as well as notorious aquatic animal pathogens. Most studies on Saprolegniaceae have been biased toward pathogenic species that are important to aquaculture rather than saprotrophic species, despite the latter's crucial roles in carbon cycling of freshwater ecosystems. Few attempts have been made to study the diversity and ecology of Saprolegniaceae; thus, their ecological role is not well-known. During a survey of oomycetes between 2016 and 2021, we investigated the diversity and distribution of culturable Saprolegniaceae species in freshwater ecosystems of Korea. In the present study, members of Saprolegniaceae were isolated and identified at species level based on their cultural, morphological, and molecular phylogenetic analyses. Furthermore, substrate preference and seasonal dynamics for each were examined. Most of the species were previously reported as animal pathogens; however, in the present study, they were often isolated from other freshwater substrates, such as plant debris, algae, water, and soil sediment. The relative abundance of Saprolegniaceae was higher in the cold to cool season than that in the warm to hot season of Korea. This study enhances our understanding of the diversity and ecological attributes of Saprolegniaceae in freshwater ecosystems.

Diversity and Functions of Endophytic Fungi Associated with Roots and Leaves of Stipa purpurea in an Alpine Steppe at Qinghai-Tibet Plateau

  • Yang, Xiaoyan;Jin, Hui;Xu, Lihong;Cui, Haiyan;Xin, Aiyi;Liu, Haoyue;Qin, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1027-1036
    • /
    • 2020
  • Stipa purpurea is a unique and dominant herbaceous plant species in the alpine steppe and meadows on the Qinghai-Tibet Plateau (QTP). In this work, we analyzed the composition and diversity of the culturable endophytic fungi in S. purpurea according to morphological and molecular identification. Then, we investigated the bioactivities of these fungi against plant pathogenic fungi and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) deaminase activities. A total of 323 fungal isolates were first isolated from S. purpurea, and 33 fungal taxa were identified by internal transcribed spacer primers and grouped into Ascomycota. The diversity of endophytic fungi in S. purpurea was significantly higher in roots as compared to leaves. In addition, more than 40% of the endophytic fungi carried the gene encoding for the ACCD gene. The antibiosis assay demonstrated that 29, 35, 28, 37 and 34 isolates (43.9, 53.1, 42.4, 56.1, and 51.5%) were antagonistic to five plant pathogenic fungi, respectively. Our study provided the first assessment of the diversity of culture-depending endophytic fungi of S. purpurea, demonstrated the potential application of ACCD activity and antifungal activities with potential benefits to the host plant, and contributed to high biomass production and adaptation of S. purpurea to an adverse environment.