DOI QR코드

DOI QR Code

Uncharted Diversity and Ecology of Saprolegniaceae (Oomycota) in Freshwater Environments

  • Bora Nam (Department of Biological Science, College of Natural Sciences, Kunsan National University) ;
  • Thuong T. T. Nguyen (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Hyang Burm Lee (Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University) ;
  • Sang Kyu Park (Nakdonggang National Institute of Biological Resources (NNIBR)) ;
  • Young-Joon Choi (Department of Biological Science, College of Natural Sciences, Kunsan National University)
  • Received : 2022.08.10
  • Accepted : 2022.09.01
  • Published : 2022.10.31

Abstract

The fungal-like family Saprolegniaceae (Oomycota), also called "water mold," includes mostly aquatic saprophytes as well as notorious aquatic animal pathogens. Most studies on Saprolegniaceae have been biased toward pathogenic species that are important to aquaculture rather than saprotrophic species, despite the latter's crucial roles in carbon cycling of freshwater ecosystems. Few attempts have been made to study the diversity and ecology of Saprolegniaceae; thus, their ecological role is not well-known. During a survey of oomycetes between 2016 and 2021, we investigated the diversity and distribution of culturable Saprolegniaceae species in freshwater ecosystems of Korea. In the present study, members of Saprolegniaceae were isolated and identified at species level based on their cultural, morphological, and molecular phylogenetic analyses. Furthermore, substrate preference and seasonal dynamics for each were examined. Most of the species were previously reported as animal pathogens; however, in the present study, they were often isolated from other freshwater substrates, such as plant debris, algae, water, and soil sediment. The relative abundance of Saprolegniaceae was higher in the cold to cool season than that in the warm to hot season of Korea. This study enhances our understanding of the diversity and ecological attributes of Saprolegniaceae in freshwater ecosystems.

Keywords

Acknowledgement

This study was supported by the Nakdonggang National Institute of Biological Resources (NNIBR).

References

  1. Dick MW. Straminipilous fungi: systematics of the peronosporomycetes including accounts of the marine straminipilous protists, the plasmodiophorids and similar organisms. 1st ed. Dordrecht: Kluwer Academic Publishers; 2001.
  2. Beakes GW, Thines M, Honda D. Straminipile "fungi" - taxonomy. eLS; 2015. p. 1-9.
  3. Beakes GW, Honda D, Thines M. 3 Systematics of the Straminipila: Labyrinthulomycota, Hyphochytriomycota, and Oomycota. In: McLaughlin DJ, Spatafora JW, editors. Systematics and evolution: part A. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 39-97.
  4. Beakes GW, Thines M. Hyphochytriomycota and Oomycota. In: Archibald JM, Simpson AGB, Slamovits CH, editors. Handbook of the protists. Cham: Springer International Publishing; 2016. p. 1-71.
  5. Molloy DP, Glockling SL, Siegfried CA, et al. Aquastella gen. nov.: a new genus of saprolegniaceous oomycete rotifer parasites related to Aphanomyces, with unique sporangial outgrowths. Fungal Biol. 2014;118(7):544-558. https://doi.org/10.1016/j.funbio.2014.01.007
  6. Rocha SCO, Lopez-Lastra CC, Marano AV, et al. New phylogenetic insights into Saprolegniales (Oomycota, Straminipila) based upon studies of specimens isolated from Brazil and Argentina. Mycol Prog. 2018;17(6):691-700. https://doi.org/10.1007/s11557-018-1381-x
  7. Choi Y-J, Lee S-H, Nguyen TTT, et al. Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) isolated from freshwater environments in Korea. Mycobiology. 2019;47(2):135-142. https://doi.org/10.1080/12298093.2018.1551855
  8. Czeczuga B, Mazalska B, Godlewska A, et al. Aquatic fungi growing on dead fragments of submerged plants. Limnologica. 2005;35(4):283-297. https://doi.org/10.1016/j.limno.2005.07.002
  9. Paul B, Steciow MM. Saprolegnia multispora, a new oomycete isolated from water samples taken in a river in the Burgundian region of France. FEMS Microbiol Lett. 2004;237(2):393-398.
  10. Dincturk E, Tanrikul TT, Birincioglu SS. First report of Saprolegnia parasitica from a marine species: gilthead seabream (Sparus aurata) in Brackish Water conditions. J Hellenic Vet Med Soc. 2019;70(2):1503-1510. https://doi.org/10.12681/jhvms.20825
  11. van den Berg AH, McLaggan D, Dieguez-Uribeondo J, et al. The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. Fungal Biol Rev. 2013;27(2):33-42. https://doi.org/10.1016/j.fbr.2013.05.001
  12. van West P. Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: new challenges for an old problem. Mycologist. 2006;20(3):99-104. https://doi.org/10.1016/j.mycol.2006.06.004
  13. Johnson TW, Seymour RL, Padgett DE. Biology and systematics of the Saprolegniaceae. Wilmington (NC): University of North Carolina at Wilmington, Department of Biological Sciences; 2002.
  14. Seymour RL. The genus Saprolegnia. Nova Hedwigia. 1970;19:1-124.
  15. Sandoval-Sierra JV, Dieguez-Uribeondo J. A comprehensive protocol for improving the description of Saprolegniales (Oomycota): two practical examples (Saprolegnia aenigmatica sp. nov. and Saprolegnia racemosa sp. nov.). PLOS One. 2015;10(7):e0132999.
  16. Sandoval-Sierra JV, Latif-Eugenin F, Martin MP, et al. Saprolegnia species affecting the salmonid aquaculture in Chile and their associations with fish developmental stage. Aquaculture. 2014;434:462-469. https://doi.org/10.1016/j.aquaculture.2014.09.005
  17. Rezinciuc S, Sandoval-Sierra JV, Dieguez-Uribeondo J. Molecular identification of a bronopol tolerant strain of Saprolegnia australis causing egg and fry mortality in farmed brown trout, Salmo trutta. Fungal Biol. 2014;118(7):591-600. https://doi.org/10.1016/j.funbio.2013.11.011
  18. Hussein MMA, Hatai K, Nomura T. Saprolegniosis in salmonids and their eggs in Japan. J Wildl Dis. 2001;37(1):204-207. https://doi.org/10.7589/0090-3558-37.1.204
  19. Fernandez-Beneitez MJ, Ortiz-Santaliestra ME, Lizana M, et al. Saprolegnia diclina: another species responsible for the emergent disease 'Saprolegnia infections' in amphibians. FEMS Microbiol Lett. 2008;279(1):23-29.
  20. Perotti MG, Basanta MD, Steciow MM, et al. Early breeding protects anuran eggs from Saprolegnia infection. Austral Ecol. 2013;38(6):672-679. https://doi.org/10.1111/aec.12014
  21. Romansic JM, Diez KA, Higashi EM, et al. Effects of the pathogenic water mold Saprolegnia ferax on survival of amphibian larvae. Dis Aquat Organ. 2009;83(3):187-193. https://doi.org/10.3354/dao02007
  22. Shin S, Kulatunga DCM, Dananjaya SHS, et al. Saprolegnia parasitica isolated from rainbow trout in Korea: characterization, anti-Saprolegnia activity and host pathogen interaction in zebrafish disease model. Mycobiology. 2017;45(4):297-311. https://doi.org/10.5941/MYCO.2017.45.4.297
  23. Jee B-Y, Lee D-C, Kim N-Y, et al. Identification and chemotherapeutic effects of the fungi from three salmonid species and their eggs. J Fish Pathol. 2007;20:147-160.
  24. Groffen J, Oh SY, Kwon S, et al. High mortality in Bufo gargarizans eggs associated with an undescribed Saprolegnia ferax strain in the Republic of Korea. Dis Aquat Organ. 2019;137(2):89-99. https://doi.org/10.3354/dao03434
  25. Pelizza SA, Cabello MN, Tranchida MC, et al. Screening for a culture medium yielding optimal colony growth, zoospore yield and infectivity of different isolates of Leptolegnia chapmanii (Straminipila: Peronosporomycetes). Ann Microbiol. 2011;61(4):991-997. https://doi.org/10.1007/s13213-011-0232-7
  26. Petrisko JE, Pearl CA, Pilliod DS, et al. Saprolegniaceae identified on amphibian eggs throughout the Pacific Northwest, USA, by internal transcribed spacer sequences and phylogenetic analysis. Mycologia. 2008;100(2):171-180. https://doi.org/10.1080/15572536.2008.11832474
  27. Wolinska J, Giessler S, Koerner H. Molecular identification and hidden diversity of novel Daphnia parasites from European Lakes. Appl Environ Microbiol. 2009;75(22):7051-7059.
  28. de Bary HA. Species der Saprolegnieen. Bot Zeitung. 1888;46:597-653.
  29. Coker WC. Leptolegnia from North Carolina. Mycologia. 1909;1(6):262-264. https://doi.org/10.1080/00275514.1909.12020597
  30. Hohnk W, Vallin S. Epidemisches Absterben von Eurytemora im Bottnischen Meerbusen, verursacht durch Leptolegnia baltica nov. spec. Veroffentlichungen des Institutes fur Meeresforschung in Bremerhaven. 1953;2:215-223.
  31. Czeczuga B, Muszynska E. Aquatic fungi growing on the eggs of the percids fish (Percidae) in Poland. Pol J Environ Stud. 1999;8:31-34.
  32. Montalva C, dos Santos K, Collier K, et al. First report of Leptolegnia chapmanii (Peronosporomycetes: Saprolegniales) affecting mosquitoes in Central Brazil. J Invertebr Pathol. 2016;136:109-116. https://doi.org/10.1016/j.jip.2016.03.012
  33. Karling JS. Zoosporic fungi of Oceania. II. Two saprophytic species of Aphanomycopsis. Mycologia. 1968;60(2):271-284. https://doi.org/10.1080/00275514.1968.12018568
  34. Harvey JV. A study of the water molds and Pythiums occurring in the soils of Chapel Hill. J Elisha Mitchell Sci Soc. 1925;41:151-164.
  35. Steciow MM, Lara E, Pillonel A, et al. Incipient loss of flagella in the genus Geolegnia: the emergence of a new clade within Leptolegnia? IMA Fungus. 2013;4(2):169-175. https://doi.org/10.5598/imafungus.2013.04.02.02
  36. Hohnk W. Nachtrag zu: Die in Nordwestdeutschland gefundenen ufer- und bodenbewohnenden Saprolegniaceae. Ver€offentlichungen des Instituts fur Meeresforschung in Bremerhaven. 1952;1:126-128.
  37. Thines M, Choi Y-J. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology. 2016;106(1):6-18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
  38. Choi Y-J, Thines M. Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLOS One. 2015;10(7):e0133655.
  39. Choi Y-J, Klosterman SJ, Kummer V, et al. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol. 2015;86:24-34. https://doi.org/10.1016/j.ympev.2015.03.003
  40. Hulvey J, Telle S, Nigrelli L, et al. Salisapiliaceae - a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia. 2010;25:109-116. https://doi.org/10.3767/003158510X551763
  41. Nigrelli L, Thines M. Tropical oomycetes in the German Bight - climate warming or overlooked diversity? Fungal Ecol. 2013;6(2):152-160. https://doi.org/10.1016/j.funeco.2012.11.003
  42. Nam B, Lee D-J, Choi Y-J. High-temperature-tolerant fungus and Oomycetes in Korea, including Saksenaea longicolla sp. nov. Mycobiology. 2021;49(5):476-490. https://doi.org/10.1080/12298093.2021.1985698
  43. Nam B, Choi Y-J. Phytopythium and Pythium species (Oomycota) isolated from freshwater environments of Korea. Mycobiology. 2019;47(3):261-272. https://doi.org/10.1080/12298093.2019.1625174
  44. Masigol H, Khodaparast SA, Mostowfizadeh-Ghalamfarsa R, et al. Taxonomical and functional diversity of Saprolegniales in Anzali Lagoon, Iran. Aquat Ecol. 2020;54(1):323-336. https://doi.org/10.1007/s10452-019-09745-w
  45. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315-322.
  46. Robideau GP, De Cock AW, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11(6):1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x
  47. Hudspeth DSS, Steven AN, Hudspeth MES. cox2 molecular phylogeny of the Peronosporomycetes. Mycologia. 2000;92(4):674-684. https://doi.org/10.1080/00275514.2000.12061208
  48. Choi Y-J, Beakes GW, Glockling S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15(6):1275-1288. https://doi.org/10.1111/1755-0998.12398
  49. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:1-13. https://doi.org/10.1186/1471-2105-9-1
  50. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  51. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  52. Vaidya G, Lohman DJ, Meier R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27(2):171-180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  53. Hammer O, Harper DA, Ryan PD. Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1-9.
  54. Anderson M, Gorley R, Clarke KP. For PRIMER: guide to software and statistical methods. Plymouth, UK: Primer-e; 2008.
  55. Czeczuga B, Muszynska E, Krzeminska A. Aquatic fungi growing on the spawn of certain amphibians. Amphib Reptilia. 1998;19(3):239-251. https://doi.org/10.1163/156853898X00151
  56. Peterson HE. An account of Danish freshwater Phycomycetes, with biological and systematical remarks. Ann Mycol. 1940;8:494-560.
  57. Bisht GS, Joshi C, Khulbe RD. Watermolds: potential biological control agents of malaria vector Anopheles culicifacies. Curr Sci. 1996;70:393-395.
  58. Scholte EJ, Knols BGJ, Samson RA, et al. Entomopathogenic fungi for mosquito control: a review. J Insect Sci. 2004;4:19.
  59. de Bary HA. Einige neue Saprolegnieen. Jahrb Wiss Bot. 1860;2:169-192.
  60. Cook WRI, Morgan E. Some observations on the Saprolegniaceae of the soils of Wales. J Bot Lond. 1934;72:345-349.
  61. Dick MW. Saprolegnia asterophora de Bary (1860). Trans Brit. 1960;43:597-602.
  62. Czeczuga B, Muszynska E, Tryggvadottir SV. Aquatic fungi growing on the eggs on nine salmonid species on the genus Hucho, Salmo, and Salvelinus. Acta Ichthyol Piscat. 1996;26(2):113-124. https://doi.org/10.3750/AIP1996.26.2.08
  63. Elliott RF. Morphological variation in New Zealand Saprolegniaceae. N Z J Bot. 1968;6(1):94-105. https://doi.org/10.1080/0028825X.1968.10428794
  64. Edgerton BF, Evans LH, Stephens FJ, et al. Synopsis of freshwater crayfish diseases and commensal organisms. Aquaculture. 2002;206(1-2):57-135. https://doi.org/10.1016/S0044-8486(01)00865-1
  65. Krugner-Higby L, Haak D, Johnson PTJ, et al. Ulcerative disease outbreak in crayfish Orconectes propinquus linked to Saprolegnia australis in Big Muskellunge Lake, Wisconsin. Dis Aquat Org. 2010;91(1):57-66. https://doi.org/10.3354/dao02237
  66. Cao H, Ou R, Li G, et al. Saprolegnia australis R. F. Elliott 1968 infection in Prussian carp Carassius gibelio (Bloch, 1782) eggs and its control with herb extracts. J Appl Ichthyol. 2014;30(1):145-150. https://doi.org/10.1111/jai.12316
  67. Hatai K, Egusa S, Nomura T. Saprolegnia australis Elliot isolated from body surface lesions of rainbow trout fingerlings. Fish Pathol. 1977;11(4):201-206. https://doi.org/10.3147/jsfp.11.201
  68. Fregeneda-Grandes JM, Rodriguez-Cadenas F, Aller-Gancedo JM. Fungi isolated from cultured eggs, alevins and broodfish of brown trout in a hatchery affected by saprolegniosis. J Fish Biol. 2007;71(2):510-518.
  69. Coker WC. The Saprolegniaceae, with notes on other water molds. Chapel Hill (NC): University of North Carolina Press; 1923.
  70. Dzyuba EV, Kondratov IG, Maikova OO, et al. Water molds of the order Saprolegniales (Oomycota) in association with fish and sponge species from Lake Baikal. Biol Bull Russ Acad Sci. 2020;47(5):514-521. https://doi.org/10.1134/S1062359020040056
  71. Humphrey JE. The Saprolegniaceae of the United States, with notes on other species. Trans Am Philos Soc. 1893;17(3):63-148.
  72. Kutzing FT. Phycologia generalis oder, Anatomie, physiologie und systemkunde der tange. Vol. 35. Leipzig, Germany: F. A. Brockhaus; 1843.
  73. Cao H, Zheng W, Xu J, et al. Identification of an isolate of Saprolegnia ferax as the causal agent of saprolegniosis of yellow catfish (Pelteobagrus fulvidraco) eggs. Vet Res Commun. 2012;36(4):239-244. https://doi.org/10.1007/s11259-012-9536-8
  74. Thuret G. Recherches zur les Zoospores des Alguez et les Antheridies des Cryptogams. Ann Sci Nat Bot. 1850;3:214.
  75. Liberman K. Pathobiology of water molds in fish: an insight into Saprolegniasis. Orono (ME): University of Maine; 2017.
  76. de Bary HA. Zu Pringsheims Beobachtungen uber den Befruchtungsact der Gattungen Achlya und Saprolegnia. Bot Zeitung. 1883;41:38-60.
  77. Sarowar MN, Cusack R, Duston J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. J Fish Dis. 2019;42(12):1745-1760. https://doi.org/10.1111/jfd.13090
  78. Ault KK, Johnson JE, Pinkart HC, et al. Genetic comparison of water molds from embryos of amphibians Rana cascadae, Bufo boreas and Pseudacris regilla. Dis Aquat Organ. 2012;99(2):127-137. https://doi.org/10.3354/dao02456
  79. Krauss GJ, Sol e M, Krauss G, et al. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev. 2011;35(4):620-651. https://doi.org/10.1111/j.1574-6976.2011.00266.x
  80. Gessner M, Gulis V, Kuehn K, et al. 17 Fungal decomposers of plant litter in aquatic ecosystems. Environ Microbiol. 2007;4:301-324.
  81. Czeczuga B, Kiziewicz B, Mazalska B. Further studies on aquatic fungi in the river Biebrza within Biebrza National Park. Pol J Environ Stud. 2003;12:531-543.
  82. Paliwal PC, Sati SC. Distribution of aquatic fungi in relation to physicochemical factors of Kosi River in Kumaun Himalaya. Nat Sci. 2009;7:70-74.
  83. Bly J, Lawson L, Dale D, et al. Winter saprolegniosis in channel catfish. Dis Aquat Org. 1992;13:155-164. https://doi.org/10.3354/dao013155
  84. Liu S, Song P, Ou R, et al. Sequence analysis and typing of Saprolegnia strains isolated from freshwater fish from Southern Chinese regions. Aquac Fish. 2017;2(5):227-233.
  85. Tandel RS, Dash P, Bhat RAH, et al. Morphological and molecular characterization of Saprolegnia spp. from Himalayan snow trout, Schizothorax richardsonii: a case study report. Aquaculture. 2021;531:735824.
  86. Couch JN. The development of the sexual organs in Leptolegnia caudata. Am J Bot. 1932;19(7):584-599. https://doi.org/10.1002/j.1537-2197.1932.tb08844.x
  87. Czeczuga B, Kozlowska M, Godlewska A. Zoosporic aquatic fungi growing on dead specimens of 29 freshwater crustacean species. Limnologica. 2002;32(2):180-193. https://doi.org/10.1016/S0075-9511(02)80007-X
  88. Eissa AE, Abdelsalam M, Tharwat N, et al. Detection of Saprolegnia parasitica in eggs of angelfish Pterophyllum scalare (Cuvier-Valenciennes) with a history of decreased hatchability. Int J Vet Sci. 2013;1(1):7-14.
  89. Kiesecker JM, Blaustein AR, Belden LK. Complex causes of amphibian population declines. Nature. 2001;410(6829):681-684. https://doi.org/10.1038/35070552
  90. Carey C, Alexander MA. Climate change and amphibian declines: is there a link? Divers Distrib. 2003;9(2):111-121. https://doi.org/10.1046/j.1472-4642.2003.00011.x
  91. Pounds JA. Climate and amphibian declines. Nature. 2001;410(6829):639-640. https://doi.org/10.1038/35070683