• 제목/요약/키워드: pathogen infection

검색결과 783건 처리시간 0.039초

Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection

  • Eun-Jin Park;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • 제21권6호
    • /
    • pp.40.1-40.20
    • /
    • 2021
  • Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.

Physical Changes in Satsuma Mandarin Leaf after Infection of Elsinoë fawcettii Causing Citrus Scab Disease

  • Paudyal, Dilli Prasad;Hyun, Jae-Wook
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.421-427
    • /
    • 2015
  • Citrus scab disease is one of the destructive diseases that reduce the value of fruit for the fresh market. We analyzed the process of symptom development after infection with scab pathogen $Elsino{\ddot{e}}$ fawcettii in the susceptible satsuma mandarin leaves to observe the structural modification against pathogen. The cuticle and epidermal cells along with 3-5 layers of mesophyll tissue were degraded 1-2 days post inoculation. Surrounding peripheral cells of degraded tissues grew rapidly and then enveloped the necrotic area along with the growing conidia. Cross sections through the lesion revealed hyphal colonization in epidermis and mesophyll tissues. In response to the pathogen colonization, host cell walls were lignified, inner cells were rapidly compartmentalized and a semi-circular boundary was formed that separated the infected region from the non-infected region, and finally prevented the intercellular pathogen spread.

INDUCTION OF SYSTEMIC RESISTANCE IN CUCUMBER AGAINST ANTHRACNOSE BY PLANT GROWTH PROMOTING FUNGI

  • Hyakumachi, Mitsuro
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 한국식물병리학회 1997년도 Proceedings of special lectures on Recent Research Trend of Plant Pathology
    • /
    • pp.47-55
    • /
    • 1997
  • Plant growth promoting fungi(PGPF) obtained from zoysiagrass rhizosphere offer dual advantages - induse systemic disease resistance response in cucumber to C. orbiculare infection and cause enhancement of plant growth and increase yield. PGPF protected plants either by colonizing roots or by their metabolites. PGPF offer an advantage by protecting plants for more than 9 weeks and 6 week in the greenhouse and field. PGPF-induced plants limited pathogen spore germination and decreased the number of infection hyphae on the leaf, and increased lignification at places of attempted pathogen infection, thus reducing the pathogen spread. PGPF elicited increased activities of chitinascs, glucanases, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase to C. orbiculare infection in cucumber plants. The role of PGPF in elevating cucumber defense response to pathogen infection suggests potential application of PGPF as biological control agents.

  • PDF

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • 제40권3호
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

STABILITY OF A CLASS OF DISCRETE-TIME PATHOGEN INFECTION MODELS WITH LATENTLY INFECTED CELLS

  • ELAIW, A.M.;ALSHAIKH, M.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제22권4호
    • /
    • pp.253-287
    • /
    • 2018
  • This paper studies the global stability of a class of discrete-time pathogen infection models with latently infected cells. The rate of pathogens infect the susceptible cells is taken as bilinear, saturation and general. The continuous-time models are discretized by using nonstandard finite difference scheme. The basic and global properties of the models are established. The global stability analysis of the equilibria is performed using Lyapunov method. The theoretical results are illustrated by numerical simulations.

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

Changes in the Aggressiveness and Fecundity of Hot Pepper Anthracnose Pathogen (Colletotricum acutatum) under Elevated CO2 and Temperature over 100 Infection Cycles

  • Koo, Tae-Hoon;Hong, Sung-Jun;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • 제32권3호
    • /
    • pp.260-265
    • /
    • 2016
  • We observed the changes in aggressiveness and fecundity of the anthracnose pathogen Colletotrichum acutatum on hot pepper, under the ambient and the twice-ambient treatments. Artificial infection was repeated over 100 cycles for ambient ($25^{\circ}C/400ppm$ $CO_2$) and twice-ambient ($30^{\circ}C/700ppm$ $CO_2$) growth chamber conditions, over 3 years. During repeated infection cycles (ICs) on green-pepper fruits, the aggressiveness (incidence [% of diseased fruits among 20 inoculated fruits] and severity [lesion length in mm] of infection) and fecundity (the average number of spores per five lesions) of the pathogen were measured in each cycle and compared between the ambient and twice-ambient treatments, and also between the early (ICs 31-50) and late (ICs 81-100) generations. In summary, the pathogen's aggressiveness and fecundity were significantly lower in the late generation. It is likely that aggressiveness and fecundity of C. acutatum may be reduced as global $CO_2$ and temperatures increase.

Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection

  • Jin Kyung Kim;Prashanta Silwal;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • 제20권5호
    • /
    • pp.37.1-37.15
    • /
    • 2020
  • Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.