• Title/Summary/Keyword: path migration

Search Result 87, Processing Time 0.026 seconds

Adaptive Migration of Mobile Agent Using Optimal Path Searching (최적 경로 탐색을 이용한 이동 에이전트의 적응적 이주)

  • Lee, Yon-Sik;Kim, Kwang-Jong;Choi, Young-Chun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06d
    • /
    • pp.362-366
    • /
    • 2008
  • 본 논문에서는 이동 에이전트의 이주 노드들에 대한 최적 경로 탐색을 통한 적응적 이주 경로 기법을 설계한다. 적응적 이주 경로 기법은 이동 에이전트가 사용자로부터 동일한 작업 요청을 부여 받았을 경우 일반적으로 전체 노드를 순회하지 않고 이주할 노드를 선택함으로써 수행되어진다. 그러나 이주 수행시 네트워크 환경 변화 및 부하로 인해 트래픽이 증가된 경우에는 스케줄링된 목적 노드로의 이주가 원활히 수행되지 못하므로 노드 순회 시간 비용이 증가하게 된다. 따라서 본 논문에서는 이러한 상황을 해결하기 위해 최적으로 이주 노드들의 경로를 지정하는 경로 탐색 알고리즘을 통해 에이전트의 노드 이주 시간 비용을 최소화할 수 있는 이주 기법을 제안한다. 제안된 기법은 이동 에이전트의 이주 신뢰성을 확보하며 순회 작업 처리 시 효율성을 높일 수 있다.

  • PDF

AN ANALYSIS OF THE FACTORS AFFECTING THE HYDRAULIC CONDUCTIVITY AND SWELLING PRESSURE OF KYUNGJU CA-BENTONITE FOR USE AS A CLAY-BASED SEALING MATERIAL FOR A HIGH-LEVEL WASTE REPOSITORY

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.89-102
    • /
    • 2012
  • The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

Pyrolysis Paths of Polybutadiene Depending on Pyrolysis Temperature

  • Choi Sung-Seen;Han Dong-Hun
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.354-358
    • /
    • 2006
  • Polybutadiene (BR) was pyrolyzed at $540-860^{\circ}C$ and the effect of pyrolysis temperature on variations in the relative abundance of the major pyrolysis products (C4-, C5-, C6-, C7-, and C8-species) was investigated. Formation of the C4-, C5-, C6-, and C7-species competed with that of the C8-species. Relative intensity of the C8-species decreased with increasing pyrolysis temperature, while that of the C5-, C6-, and C7-species increased. Pyrolysis paths were became more complicated with increasing pyrolysis temperature. We suggested the operation of double bond migration and succeeding rearrangements for the formation of the C5- and C7-species and various rearrangements, including a double bond, for the formation of the C6-species at high temperature. The activation energies for the pyrolysis product ratios of(C5+C6+C7)/C4 and C8/C4 were used to explain the competition reactions to form the pyrolysis products.

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF

Ablation of Arg-tRNA-protein transferases results in defective neural tube development

  • Kim, Eunkyoung;Kim, Seonmu;Lee, Jung Hoon;Kwon, Yong Tae;Lee, Min Jae
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.443-448
    • /
    • 2016
  • The arginylation branch of the N-end rule pathway is a ubiquitin-mediated proteolytic system in which post-translational conjugation of Arg by ATE1-encoded Arg-tRNA-protein transferase to N-terminal Asp, Glu, or oxidized Cys residues generates essential degradation signals. Here, we characterized the ATE1−/− mice and identified the essential role of N-terminal arginylation in neural tube development. ATE1-null mice showed severe intracerebral hemorrhages and cystic space near the neural tubes. Expression of ATE1 was prominent in the developing brain and spinal cord, and this pattern overlapped with the migration path of neural stem cells. The ATE1−/− brain showed defective G-protein signaling. Finally, we observed reduced mitosis in ATE1−/− neuroepithelium and a significantly higher nitric oxide concentration in the ATE1−/− brain. Our results strongly suggest that the crucial role of ATE1 in neural tube development is directly related to proper turn-over of the RGS4 protein, which participate in the oxygen-sensing mechanism in the cells.

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

DEPTH AND LAYOUT OPTIMIZATIONS OF A RADIOACTIVE WASTE REPOSITORY IN A DISCONTINUOUS ROCK MASS BASED ON A THERMOMECHANICAL MODEL

  • Kim, Jhin-Wung;Koh, Yong-Kwon;Bae, Dae-Seok;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.429-438
    • /
    • 2008
  • The objective of the present study is the depth and layout optimizations of a single layer, high level radioactive waste repository in a discontinuous rock mass with special joint set arrangements. A single layer repository model, considering variations in the repository depths, pitches, and tunnel spacings, is used to analyze the thermomechanical interaction behavior. It is assumed that the repository is constructed in saturated granite with joints; the PWR spent fuel in a disposal canister is installed in a deposition drift which is then sealed with compacted bentonite; and the backfill material is filled in the repository tunnel. The decay heat generated by the high level radioactive wastes governs the thermomechanical behavior of the near field rock mass of the repository. The temperature and displacement behavior of the repository is influenced more by the pitch variations than the tunnel spacing and repository depth. However, the stress behavior is influenced more by the repository depth variations than the pitch and tunnel spacing. For the final selection of the tunnel spacing, pitch, and repository depth, other aspects such as the nuclide migration through a groundwater flow path, construction costs, operation costs, and so on should be considered.

Using Remote Sensing in Forecasting Appearance of Oceanic Pollutions on the Coast (연안해역의 해양오염예측을 위한 원격탐측기법 적용 연구)

  • 정영동;김진기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.125-135
    • /
    • 2001
  • The research on Harmful Algal Blooms is generally in progress through field work, such as the naked eye and sampling. It was difficult to forecast exactly the course, from appearance of red tide to disappearance, with the established ways of investigation and analysis. Accordingly it is need to analyze environmental factors in time and space, the appearance of red tide and the path of its migration by more objective and scientific methods. In this study the remote sensing was used to diminish damage from the occurrence of red tide. Such as a temperature change of sea water and a change of tidal currents, the major cause for red tide. The probed data were utilized. The technique for forecast of red tide phenomenon on the south coast was researched by analyzing the cause of red tide, pollutant flowed from landand the possibility of application of the technique was showed.

  • PDF

Myosin X and Cytoskeletal Reorganization

  • Ikebe, Mitsuo;Sato, Osamu;Sakai, Tsuyoshi
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • Myosin X is one of myosin superfamily members having unique cellular functions on cytoskeletal reorganization. One of the most important cellular functions of myosin X is to facilitate the formation of membrane protrusions. Since membrane protrusions are important factors for diverse cellular motile processes including cell migration, cell invasion, path-finding of the cells, intercellular communications and so on, it has been thought that myosin X plays an important role in various processes that involve cytoskeletal reorganization including cancer progression and development of neuronal diseases. Recent studies have revealed that the unique cellular function of myosin X is closely correlated with its unique structural characteristics and motor properties. Moreover, it is found that the molecular and cellular activities of myosin X are controlled by its specific binding partner. Since recent studies have revealed the presence of various specific binding partners of myosin X, it is anticipated that the structural, biochemical and cell biological understanding of the binding partner dependent regulation of myosin X function can uncover the role of myosin X in diverse cell biological processes and diseases.