• Title/Summary/Keyword: path integral

Search Result 118, Processing Time 0.029 seconds

Post-Processing Technique on the Determination of Crack Tip Stress Intensity Factors (균열선단 응력확대계수 결정을 위한 후처리기법)

  • Jin, Chi Sub;Jang, Heui Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.17-27
    • /
    • 1991
  • The determination of the stress intensity factors is investigated by means of a surface integral defined around the crack tip of the structure. It has been shown in this work that this integral is derived from the standard path integral J. The use of the surface integral has also been extended to the case where body forces act. Computer program obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length/crack length)is about 25 percent, relatively correct $K_I$ and $K_{II}$ values can be obtained for the exterior radius ranging from 1/3 to 1 of the crack length.

  • PDF

The nonlinear galloping of iced transmission conductor under uniform and turbulence wind

  • Liu, Zhonghua;Ding, Chenhui;Qin, Jian;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.465-475
    • /
    • 2020
  • The analytical approach for stability and response of iced conductor under uniform wind or turbulent wind is presented in this study. A nonlinear dynamic model is established to describe the motion of iced conductor galloping. In the case of uniform wind, the stability condition is derived by analyzing the eigenvalue associated with linearized matrix; The first order and second order approximation of galloping amplitude are obtained using multi-scale method. However, real wind has random characteristics essentially. To accurately evaluate the performance of the galloping iced conductor, turbulence wind should be described by random processes. In the case of turbulence wind, the Lyapunov exponent is conducted to judge the stability condition; The probability density of displacement is obtained by using the path integral method to predict galloping amplitude. An example is proposed to verify the effectiveness of the previous methods. It is shown that the fluctuating component of wind has little influence on the stability of iced conductor, but it can increase galloping amplitude. The analytical results on stability and response are also verified by numerical time stepping method.

A Study on the Optimum Integration Path for the Analytic Evaluation of the Sommerfeld Integrals (Sommerfeld 적분의 해석적 계산을 위한 최적 적분경로에 관한 연구)

  • Lee, Y.S.;Kim, U.J.;Ko, J.W.;Cho, Y.K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.64-68
    • /
    • 2003
  • For the purpose of the efficient derivation of the closed-form Green's functions by which MoM matrix elements can be analytically evaluated, the optimum approximation path which is deformed from the Sommerfeld integration path on the complex $k_{\rho}$-plane is proposed based upon the steepest descent method and three level approximation procedure.

  • PDF

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer (하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어)

  • Baek, Du-san;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

A Study on the Calculation of Stress Intensity Fantors considering Pressure of Crack-Face (균열면의 압력을 고려한 응력확대계수의 결정에 관한 연구)

  • 진치섭;최현태;이홍주
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by sur-face integral method around the crack tip of the nlass~vc: concrete structure. The surface integral met hod is naturally derived from the standal-ci path integral J. Howevcr. In the J integral method, pressure in the crack-face and body forces can not be considered, while this theory has advantage of ccmsidering many kind of forces, so t.his theory will be useful in investigating more accurate strt:ss states around crack tip. Furthermore. t h~s rrlethod can elerninate unntussary process of using singular elements and fine mesh around crack tip which is used 11; modelling the singularity around crack tip. A computer program for determming $K_I$, $K_{II}$ is tfcvulopcd by applying this theory. $K_I$, $K_{II}$ values usmg X noded isoparametric elements which was proved and variation of the stress intensity factor was investigated by application of darn structures.

Distribution Pattern of White Snakeroot as an Invasive Alien Plant and Restoration Strategy to Inhibit Its Expansion in Seoripool Park, Seoul

  • Lee, Han-Sol;Yoo, Hae-Mi;Lee, Chang-Seok
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.197-205
    • /
    • 2003
  • White snakeroot (Ageratina altissima (L.) R. King & H. Robinson) as an invasive alien plant appeared more abundantly at lower elevations where frequent artificial interferences prevailed than at higher elevations where such impacts were less. They appeared abundantly in introduced forests such as black locust plantation but they did not appear or were rare in natural forests such as oak forest. But an exceptional phenomenon where white snakeroot did not appear was found in a Korean pine stand with dense cover afforested recently. Appearance status of white snakeroot in each section of trampling path depended on breadth of the path and relative light intensity. Growth of white snakeroot measured as the number of ramet per genet, height, and biomass was better near the trampling path and was reduced toward the forest interior. The growth was proportionate to the relative light intensity measured according to distance from the trampling path. Such results support the fact generally known in relation invasion and expansion of the invasive alien plants. From this viewpoint, we suggest a management plan that applies ecological restoration principles to address ecosystems infected with white snakeroot by restoring the integral feature of the degraded nature and more thoroughly conserving the remaining nature.

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

Volume Integral Expressions for Numerical Computation of the Dynamic Energy Release Rate (동적(動的)에너지 방출율(放出率)의 수치해석(數値解析)을 위한 체적적분식(體積積分式))

  • Koh, Hyun Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.65-73
    • /
    • 1989
  • Continuum formulations for the expressions of dynamic energy release rates and computational methods for dynamic stress intensity factors are developed for the analysis of dynamic fracture problems subjected to stress wave loading. Explicit volume integral expressions for instantaneous dynamic energy release rates are derived by modeling virtual crack extensions with the dynamic Eulerian-Lagrangian kinematic description. In the finite element applications a finite region around a crack-tip is modeled by using quarter-point singular isoparametric elements, and the volume integrals are evaluated for each crack-tip element during virtual crack extensions while the singularity is maintained. It is shown that the use of the present method is more reliable and accurate for the dynamic fracture analysis than that of other path-independent integral methods when the effects of stress waves are significant.

  • PDF