• Title/Summary/Keyword: path follow

Search Result 236, Processing Time 0.033 seconds

Path Planning for AGVs with Path Tracking (경로 추적 방식의 AGV를 위한 경로 계획)

  • Do, Joo-Cheol;Kim, Jung-Min;Jung, Kyung-Hoon;Woo, Seung-Beom;Kim, Sung-Shin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • This paper presents a study of path-planning method for AGV(automated guided vehicle) based on path-tracking. It is important to find an optimized path among the AGV techniques. This is due to the fact that the AGV is conditioned to follow the predetermined path. Consequently, the path-planning method is implemented directly affects the whole AGV operation in terms of its performance efficiency. In many existing methods are used optimization algorithms to find optimized path. However, such methods are often prone with problems in handling the issue of inefficiency that exists in system's operation due to inherent undue time delay created by heavy load of complex computation. To solve such problems, we offer path-planning method using modified binary tree. For the purpose of our experiment, we initially designed a AGV that is equiped with laser navigation, two encoders, a gyro sensor that is meant to be operated within actual environment with given set of constrictions and layout for the AGV testing. The result of our study reflects the fact that within such environments, the proposed method showed improvement in its efficiency in finding optimized path.

Path Tracking Motion Control using Fuzzy Inference for a Parking-Assist System (퍼지 추론을 이용한 주차지원 시스템의 경로추종 운동제어)

  • Kim, Seung-Ki;Chang, Hyo-Whan;Kim, Chang-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • A parking-assist system is defined that a driver adjusts vehicle velocity through brake pedal operation and parking-assist system controls the motion of the vehicle to follow a collision-free path. In this study, a motion control algorithm using Fuzzy inference is proposed to track a maneuvering clothoid parallel path. Simulations are performed under SIMULINK environments using MATLAB and CarSim for a vehicle model. As the vehicle model in MATLAB a bicycle model is used including lateral dynamics. The simulation results show that the path tracking performance is satisfactory under various driving and initial conditions.

Development of Working Path Formation Program for Autonomous Tractor System (자율 주행 트랙터 경운경로생성 프로그램 개발)

  • Seo, Il-Hwan;Seo, Dong-Hyun;Kim, Ki-Dae
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.1
    • /
    • pp.113-121
    • /
    • 2010
  • Land consolidation ratio for rice paddy fields reached to 64.7% as of 2008 in Korea, and this also accelerated automation of field machinery. Especially, research on autonomous tractors has been continuously conducted. Tillage is one of the labor-, energy-, and time-consuming field operations. Most important requirements for autonomous tractors would be travelling path planning and electronic system to control the tractor to follow the path. The instruction of computer was required to conduct the tillage operation in field with unmanned traveling tractor. This instruction was coincidently used in the control of the traveling path and the motion of tractor. The objectives of the study were 1) to characterize and model tillage operating sequence, turning pattern, and 2) to develop tillage path formation programs for autonomous tractor and evaluate the performance.

Characteristics of solutions in softening plasticity and path criterion

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.141-152
    • /
    • 2003
  • Characteristics of solutions of softening plasticity are discussed in this article. The localized and non-localized solutions are obtained for a three-bar truss and their stability is evaluated with the aid of the second-order work. Beyond the bifurcation point, the single stable loading path splits into several post-bifurcation paths and the second-order work exhibits several competing minima. Among the multiple post-bifurcation equilibrium states, the localized solutions correspond to the minimum points of the second-order work, while the non-localized solutions correspond to the saddles and local maximum points. To determine the real post-bifurcation path, it is proposed that the structure should follow the path corresponding to the absolute minimum point of the second-order work. The proposal is further proved equivalent to Bazant's path criterion derived on a thermodynamics basis.

DEVS-based Digital Twin Simulation Environment Modeling for Alternative Route Selection in Emergency Situations of Unnamed Aerial Vehicles (무인비행체의 유사시 대안 경로 선택을 위한 DEVS 기반 디지털 트윈 시뮬레이션 환경 모델링)

  • Kwon, Bo Seung;Jung, Sang Won;Noh, Young Dan;Lee, Jong Sik;Han, Young Shin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1007-1021
    • /
    • 2022
  • Autonomous driving of unmanned aerial vehicles may have to pay expensive cost to create and switch new routes if unexpected obstacles exist or local map updates occured by the control system due to incorrect route information. Integrating digital twins into the path-following process requires more computing resources to quickly switch the wrong path to an alternative path, but it can quickly update the path during flight. In this study, we design a DEVS-based simulation environment which can modify optimized paths through short-term simulation of multi-virtual UAVs for applying digital twin concepts to path follow. Through simulation, we confirmed the possibility of increasing the mission stability of UAV.

3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments (복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘)

  • Boseong Kim;Seungwook Lee;Jaeyong Park;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

A Shortest Path Planning Algorithm for Mobile Robots Using a Modified Visibility Graph Method

  • Lee, Duk-Young;Koh, Kyung-Chul;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1939-1944
    • /
    • 2003
  • This paper presents a global path planning algorithm based on a visibility graph method, and applies additionally various constraints for constructing the reduced visibility graph. The modification algorithm for generating the rounded path is applied to the globally shortest path of the visibility graph using the robot size constraint in order to avoid the obstacle. In order to check the visibility in given 3D map data, 3D CAD data with VRML format is projected to the 2D plane of the mobile robot, and the projected map is converted into an image for easy map analysis. The image processing are applied to this grid map for extracting the obstacles and the free space. Generally, the tree size of visibility graph is proportional to the factorial of the number of the corner points. In order to reduce the tree size and search the shortest path efficiently, the various constraints are proposed. After short paths that crosses the corner points of obstacles lists up, the shortest path among these paths is selected and it is modified to the combination of the line path and the arc path for the mobile robot to avoid the obstacles and follow the rounded path in the environment. The proposed path planning algorithm is applied to the mobile robot LCAR-III.

  • PDF

A Study on the Swept Path Width for the Bimodal Tram (바이모달 트램 곡선 선회폭에 관한 연구)

  • Moon, Kyeong-Ho;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.51-56
    • /
    • 2011
  • The train travels on the track and, thus, the rear wheels precisely follow the paths of the front wheels. On the contrary, in the vehicles running on the road like automobiles, buses and trucks, the front wheels try to drag the rear ones toward them and across the inside of the curve. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In the case of the bimodal tram with AWS(all wheel steering), the off-tracking decrease but the rear swing-out values increase because of the rear steering at the reverse phase angle. Thus, in order to determine the swept path width, maximum road width at the minimum turning radius, off-tracking and swing-out should be considered for the bimodal tram. In this paper, trajectory simulations were carried out for the various condition such as front steering, front and rear steering and suppression of swing-out to optimize the swept path width.

  • PDF

Full Dynamic Model in the Loop Simulation for Path Tracking Control of a 6$\times$6 Mobile Robot (6$\times$6 이동로봇의 경로추종을 위한 동역학 시뮬레이션)

  • Huh, Jin-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.

Leveraging Reinforcement Learning for Generating Construction Workers' Moving Path: Opportunities and Challenges

  • Kim, Minguk;Kim, Tae Wan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1085-1092
    • /
    • 2022
  • Travel distance is a parameter mainly used in the objective function of Construction Site Layout Planning (CSLP) automation models. To obtain travel distance, common approaches, such as linear distance, shortest-distance algorithm, visibility graph, and access road path, concentrate only on identifying the shortest path. However, humans do not necessarily follow one shortest path but can choose a safer and more comfortable path according to their situation within a reasonable range. Thus, paths generated by these approaches may be different from the actual paths of the workers, which may cause a decrease in the reliability of the optimized construction site layout. To solve this problem, this paper adopts reinforcement learning (RL) inspired by various concepts of cognitive science and behavioral psychology to generate a realistic path that mimics the decision-making and behavioral processes of wayfinding of workers on the construction site. To do so, in this paper, the collection of human wayfinding tendencies and the characteristics of the walking environment of construction sites are investigated and the importance of taking these into account in simulating the actual path of workers is emphasized. Furthermore, a simulation developed by mapping the identified tendencies to the reward design shows that the RL agent behaves like a real construction worker. Based on the research findings, some opportunities and challenges were proposed. This study contributes to simulating the potential path of workers based on deep RL, which can be utilized to calculate the travel distance of CSLP automation models, contributing to providing more reliable solutions.

  • PDF