• Title/Summary/Keyword: patch resonator

Search Result 45, Processing Time 0.034 seconds

Circularly Polarized Patch antenna using meta-material resonator (메타구조 공진기를 이용한 원편파 패치안테나)

  • Kwon, Jae-kwang;Kim, Ju-an;Kim, Gue-chol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.51-52
    • /
    • 2013
  • In this paper, circularly polarized microstrip for the S-band with a center frequency of 3.5GHz have been studied using the meta-structure of the resonator Designed antenna using CST studio, the meta-structure resonator was etched in the ground plane for miniaturization and circulary polarization was implemented with slot in center of the patch.

  • PDF

Analysis of the Spherical-Rectangular Patch Microstrip Resonator (구면사각패치 마이크로스트립 공진기 해석)

  • Yang, Doo-Young;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.25-31
    • /
    • 1990
  • We analyze the spherical-rectangular patch microstrip resonator with conformal surface by the cavity model and derive the formulas to calculate resonant frequency in the consideration of effective dielectric constant in order to minimize the errors of resonant frequency due to the fringing fields. A transmission type spherical-rectangular patch microstrip resonator operating at 3GHz, for example, is designed and fabricated on Epsilam-10 substate. Measuring data of resonant frequency and return loss are 2.985 GHz and -44.4dB respectively. Those well agreed with theoretical values.

  • PDF

Microstrip Lowpass Filter with Very SharpTransition Band Using T-Shaped, Patch, and Stepped Impedance Resonators

  • Hayati, Mohsen;Sheikhi, Akram
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.538-541
    • /
    • 2013
  • A compact microstrip lowpass filter (LPF) with an elliptic function response is proposed. A high equivalent capacitance and inductance between the structures of the resonator result in the sharp transition band of 0.04 GHz from 4 GHz to 4.04 GHz with an attenuation level of -3 dB and -20 dB, respectively. To improve the LPF rejection band, multiple open stubs are connected to the proposed resonator. A filter with a 3-dB cut-off frequency at 4 GHz is designed, fabricated, and measured, and agreement between the measured and simulated results is achieved. The results show that a stopband bandwidth of 131% with a suppression level better than -20 dB is obtained while achieving a compact size with a wide stopband.

Analysis and Design of the Cylindrical-rectangular Patch Microstrip Resonator (원통면 사각패치 마이크로스트립 공진기 특성 해석 및 설계)

  • 이민수;이상설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.10
    • /
    • pp.925-933
    • /
    • 1991
  • Caracteristics of cylindrical rectanyular patch microshtrip resonator are analyzed by cavity model. To minimize the error of resonant frequency due to fringing field, the resonant frequency is calcylated by the concept of effective dielectric constant. The transmisson type resonator operating at 3GHz is designed and manufactured. The measured data of the resonant frequency and reflection loss are 3.019Ghz and \ulcorner32.78dB respectively. These results nearly coincide with theoretical results.

  • PDF

Circular Polarization Patch Antenna with GPS and GLONASS Stopband for Satellite Communication (GPS, GLONASS 저지대역을 갖는 위성통신용 원편파 패치안테나)

  • Kim, Joo-Suk;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.245-252
    • /
    • 2018
  • In this paper, the dual band circular polarization patch antenna was designed by using band rejection characteristics of CSRR structure for geostationary satellites. A quadrangular CSRR structure was etched on the ground at the rear of the patch antenna's feed to obtain band rejection characteristics in between the receiving frequency band(1525~1559MHz) and transmission band(1626.5~1660.5MHz), and the corner of the patch antenna was truncated to enable circular polarization. It was confirmed that the resonant frequency of the patch antenna differs according to the size anc location of the CSRR and cirular polarization characteristics with simulation and measurement results. Measurement results shows the gain of about 0.2dB and 1.5dB in the TX and RX band.

Microstrip Bandpass Filter Using of a T-Shaped Meander Loop Resonator (Microstrip Bandpass Filter을 이용한 향상된 T-Shaped Meander Loop 공진기)

  • 정주현;오인열;나극환
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.157-160
    • /
    • 2001
  • 본 논문에서 5.8GHz의 주파수 대역에서 사용할 수 있는 향상된 커플링 구조와 크기를 줄인 dual-mode microstrip bandpass filter를 설계하였다. 여기서 meander loop resonator를 쓰는 이유는 크기가 작고 방사 손실이 적으며 패턴이 간단하기 때문이다. 또한 이와 비슷한 특성을 갖는 ring, square patch, disk등은 불연속 성분을 가짐으로써 이중모드의 구현이 가능하다. 향상된 형태의 dual-mode microstrip bandpass filter의 변형된 T-shaped meander loop resonator를 소형으로 발전되고. 높은 선택도를 가지는 구조이다. 이 형태의 filter에서 150MHz의 bandwidth을 가지고 5.8GHz주파수를 가지는 구조로 설계하였다.

  • PDF

Microstrip Resonator for Simultaneous Application to Filter and Antenna (여파기와 안테나로 동시 적용이 가능한 마이크로스트립 공진기)

  • Sung, Young-Je;Kim, Duck-Hwan;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.475-485
    • /
    • 2010
  • This paper proposes a novel concept for a microstrip resonator that can function as a filter and as an antenna at the same time. The proposed structure consists of an outer ring, an open loop-type inner ring, a circular patch, and three ports. The frequencies where the proposed structure works as a filter and as an antenna, respectively, are determined primarily by the radius of the inner ring and the circular patch. The measured results show that, when the microstrip resonator operates as a filtering device, this filter has about 15.1 % bandwidth at the center frequency of 0.63 GHz and a minimum insertion loss of 1.5 dB within passband. There are three transmission zeros at 0.52 GHz, 1.14 GHz, and 2.22 GHz. In the upper stopband, cross coupling - taking place at the stub of the outer ring - and the open loop-type inner ring produce one transmission zero each. The circular patch generates the dual-mode property of the filter and another transmission zero, whose location can be easily adjusted by altering the size of the circular patch. The proposed structure works as an antenna at 2.7 GHz, showing a gain of 3.8 dBi. Compared to a conventional patch antenna, the proposed structure has a similar antenna gain. At the resonant frequencies of the filter and the antenna, high isolation(less than -25 dB) between the filter port and the antenna port can be obtained.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.