DOI QR코드

DOI QR Code

Microstrip Resonator for Simultaneous Application to Filter and Antenna

여파기와 안테나로 동시 적용이 가능한 마이크로스트립 공진기

  • Sung, Young-Je (Department of Electronics Engineering, Kyonggi University) ;
  • Kim, Duck-Hwan (Department of Radio Communication Engineering, Korea University) ;
  • Kim, Young-Sik (Department of Radio Communication Engineering, Korea University)
  • 성영제 (경기대학교 전자공학과) ;
  • 김덕환 (고려대학교 전파통신공학과 전파기술연구실) ;
  • 김영식 (고려대학교 전파통신공학과)
  • Published : 2010.05.31

Abstract

This paper proposes a novel concept for a microstrip resonator that can function as a filter and as an antenna at the same time. The proposed structure consists of an outer ring, an open loop-type inner ring, a circular patch, and three ports. The frequencies where the proposed structure works as a filter and as an antenna, respectively, are determined primarily by the radius of the inner ring and the circular patch. The measured results show that, when the microstrip resonator operates as a filtering device, this filter has about 15.1 % bandwidth at the center frequency of 0.63 GHz and a minimum insertion loss of 1.5 dB within passband. There are three transmission zeros at 0.52 GHz, 1.14 GHz, and 2.22 GHz. In the upper stopband, cross coupling - taking place at the stub of the outer ring - and the open loop-type inner ring produce one transmission zero each. The circular patch generates the dual-mode property of the filter and another transmission zero, whose location can be easily adjusted by altering the size of the circular patch. The proposed structure works as an antenna at 2.7 GHz, showing a gain of 3.8 dBi. Compared to a conventional patch antenna, the proposed structure has a similar antenna gain. At the resonant frequencies of the filter and the antenna, high isolation(less than -25 dB) between the filter port and the antenna port can be obtained.

본 논문에서는 여파기와 안테나 기능을 동시에 수행할 수 있는 새로운 개념의 마이크로스트립 공진기를 제안하고자 한다. 제안한 구조는 바깥쪽 링, 안쪽 링, 원형 패치, 그리고 3개의 포트로 이루어져 있다. 제안하는 구조가 여파기와 안테나로 동작하는 주파수는 각각 주로 안쪽 링과 원형 패치의 반지름에 의해 결정된다. 측정 결과를 통해 마이크로스트립 공진기가 여파기로 동작할 경우 공진 주파수는 0.69 GHz에서 3 dB 대역폭 15.1 %에 삽입 손실이 -1.4 dB의 특성을 보였다. 이 때, 통과 대역 아래 부분에 전달 영점은 0.52 GHz에, 윗부분의 전달 영점은 1.14 GHz와 2.22 GHz에 위치하였다. 위쪽 저지 대역에서 바깥쪽 링의 스터브에 의한 교차 결합(cross coupling)과 안쪽 링에 의해 각각 1개의 전달 영점이 형성된다. 원형 패치는 이중 모드(dual-mode) 특성을 형성하며, 또 다른 전달 영점을 유도한다. 제안한 구조가 안테나로 동작하는 주파수는 2.7 GHz이고, 이득은 3.8 dBi 였다. 여파기와 안테나의 공진 주파수에서 격리도 특성(isolation)이 각각 -25 dB 이하의 좋은 특성을 나타내었다.

Keywords

References

  1. D. M. Pozar, Microwave Engineering, 2nd Ed., New York: John Wiley & Sons Inc., 1998.
  2. J. S. Hong, M. J. Lancaster, Microstrip Filter for RF/Microwave Application, New York: John Wiley & Sons Inc., 2001.
  3. Cheng-Hsing Hsu, Hong Tie Soong, Cheng-Liang Huang, and Ming-Ta Kao, "Microstrip rectangular ring bandpass filter design using high permittivity substrate", in Asia-Pacific Microwave Conf., New Delhi, India, Dec. 2005.
  4. Byungje Lee, F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate", IEEE Trans. Antennas Propagat., vol. 50, no. 8, pp. 1160-1162, Aug. 2002. https://doi.org/10.1109/TAP.2002.801360
  5. J. S. Hong, M. J. Lancaster, "Coupling of microstrip square open loop resonators for cross-coupled planar microwave filters", IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2099-2109, Dec. 1996. https://doi.org/10.1109/22.543968
  6. L-H Hsieh, K. Chang, "Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators", IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 193-199, Jan. 2003. https://doi.org/10.1109/TMTT.2002.806901
  7. H. -K. Ryu, J. -M. Woo, "Miniaturisation of rectangular loop antenna using meander line for RFID tags", Electron. Lett., vol. 43, no. 7, pp. 372-374, Mar. 2007. https://doi.org/10.1049/el:20070398
  8. H. Ghali, T. A. Moselhy, "Miniaturized fractal ratrace, branch-line, and coupled-line hybrids", IEEE Trans. Microwave Theory Tech., vol. 52, no. 11, pp. 2513-2520, Nov. 2004. https://doi.org/10.1109/TMTT.2004.837154
  9. J. S. Lim, J. S. Park, Y. T. Lee, D. Ahn, and S. Nam, "Application of defected ground structure in reducing the size of amplifiers", IEEE Microwave Wireless Comp. Lett., vol. 12, no. 7, pp. 261-263, Jul. 2002. https://doi.org/10.1109/LMWC.2002.801139
  10. B. Lin, Q. Zheng, and N. Yuan, "A novel planar PBG structure for size reduction", IEEE Microwave Wireless Comp. Lett., vol. 16, no. 5, pp. 269-271, May 2006. https://doi.org/10.1109/LMWC.2006.873507
  11. S. Ting, K. Tam, and R. P. Martins, "Miniaturized microstrip lowpass filter with wide stopband using double equilateral U-shaped defected ground structure", IEEE Microwave Wireless Comp. Lett., vol. 16, no. 5, pp. 240-242, May 2006. https://doi.org/10.1109/LMWC.2006.873592
  12. Y. J. Sung, C. S. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure", IEEE Microwave Wireless Compon. Lett., vol. 14, no. 1, pp. 7-9, Jan. 2004. https://doi.org/10.1109/LMWC.2003.821499
  13. L. -C. Tsai, C. -W. Huse, "Dual-band bandpass filters using equal length coupled-serial-shunted lines and Z-transform techniques", IEEE Trans. Microwave Theory Tech., vol. 52, no. 4, pp. 1111-1117, Apr. 2004. https://doi.org/10.1109/TMTT.2004.825680
  14. C. Y. Chen, C. Y. Hsu, and H. R. Chuang, "Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators", IEEE Microwave Wireless Comp. Lett., vol. 16, no. 12, pp. 669-671, Dec. 2006. https://doi.org/10.1109/LMWC.2006.885621
  15. S. -F. Chang, Y. -H. Jeng, and J. -L. Chen, "Dualband step-impedance bandpass filter for multimode wireless LANs", Electron. Lett., vol. 40, no. 1, pp. 38-39, Jan. 2004. https://doi.org/10.1049/el:20040065
  16. J. Wang, Y. -X. Guo, B. -Z. Wang, L. C. Ong, and S. Xiao, "High-selectivity dual-band stepped-impedance bandpass filter", Electron. Lett., vol. 42, no. 7, pp. 538-539, Apr. 2006. https://doi.org/10.1049/el:20064491
  17. Y. L. Kuo, Y. T. Cheng, and K. L.Wong, "Printed inverted-F antennas for applications in wireless communication", in Proc. IEEE AP-S Int. Symp., vol. 3, pp. 454-457, Jun. 2002. https://doi.org/10.1109/APS.2002.1018250
  18. I. Chen, C. M. Peng, "Microstrip-fed dual-U-shaped printed monopole antenna for dual-band wireless communication applications", Electron. Lett., vol. 39, no. 13, pp. 955-956, Jun. 2003. https://doi.org/10.1049/el:20030632
  19. C. M. Su, K. L. Wong, W. S. Chen, and Y. T. Cheng, "Microstrip coupled printed inverted-F monopole antenna", Microwave Opt. Tech. Lett., vol. 43, no. 6, pp. 470-472, Dec. 2004. https://doi.org/10.1002/mop.20504
  20. M. Karim, A. Liu, A. Alphones, and A. Yu, "A reconfigurable micromachined switching filter using periodic structures", IEEE Trans. Microwave Theory Tech., vol. 55, no. 6, pp. 1154-1162, Jun. 2007. https://doi.org/10.1109/TMTT.2007.897670
  21. M. Sanchez-Renedo, R. Gomez-Garcia, J. I. Alonso, and C. Briso-Rodriguez, "A switchable microstrip patch antenna for dual frequency operation", IEEE Trans. Microwave Theory Tech., vol. 53, no. 1, pp. 191-199, Jan. 2005. https://doi.org/10.1109/TMTT.2004.839309
  22. Y. J. Sung, "A switchable microstrip patch antenna for dual frequency operation", ETRI Journal, vol. 30, no. 4, pp. 603-605, Aug. 2008. https://doi.org/10.4218/etrij.08.0208.0115
  23. Y. J. Sung, "Reconfigurable patch antenna for polarization diversity", IEEE Trans. Antennas Propagat., vol. 56, no. 9, pp. 3053-3054, Sep. 2008. https://doi.org/10.1109/TAP.2008.928810
  24. X. -C. Zhang, Z. -Y. Yu, and J. Xu, "Design of microstrip dual-mode filters based on source-loaded coupling", IEEE Microwave Wireless Comp. Lett., vol. 18, no. 10, pp. 677-679, Oct. 2008. https://doi.org/10.1109/LMWC.2008.2003461