• 제목/요약/키워드: passivity controller

검색결과 47건 처리시간 0.022초

Passive-based Bilateral Controller Design under Varying Time Delay

  • 고영;정길도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.97-99
    • /
    • 2009
  • Bilateral teleoperation systems, connected to computer networks such as Internet have to deal with the time delay varying depending on factors such as congestion, bandwidth or distance. And the entire system is easy to become unstable due to irregular time delay. Passivity concept has been using as a framework to solve the stability problem in bilateral control of teleoperation. Acontrol scheme for teleoperation systems with varying time delay is proposed based on a passivity concept is proposed in this paper. One approach makinguse of the characteristic impedances is proposed to achieve a passive control. Since passive control does not mean that the system performance will be acceptable, another transmission scheme which focuses on both the passive feature and the acceptable performance is configured for varying time delay in this paper. The tracking performance has been proved through the computer simulation for varying time delay bilateral teleoperation system using Matlab Simulink.

  • PDF

이중권선 유도발전기로 구동되는 유도전동기의 수동성기반제어기 설계 (Passivity-based Controller Design for Induction Motor Driven by Doubly-fed Induction Generator)

  • 이상철;김종현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.639-643
    • /
    • 2003
  • We are interested in this paper on the control of an electromechanical system consisting of a doubly-fed induction generator(DFIG), driven by a prime mover that can supply or extract mechanical power, e.g., a flywheel inertia, and an induction motor(IM). The stator of the Induction machine is connected to the stator of the generator whose rotor voltage is regulated by a bidirectional converter. The main interest of this configuration is that it permits a bidirectional power flow between the motor, which may operate in regenerative mode, and the generator We propose a passivity-based controller to regulate the motor mechanical speed. Since this kind of controllers achieve stabilization via energy balancing, regulation of the power flow in the system is naturally incorporated. Simulation results are presented to illustrate the main points of our paper.

  • PDF

변위ㆍ정보와 SPR 필터를 이용한 대형 우주 구조물의 강인 제어기에 관한 연구 (Robust Controllers for Large Space Structures Using an SPR Filter and Displacement Feedback)

  • 손영익;심형보;조남훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권9호
    • /
    • pp.520-525
    • /
    • 2003
  • A robust controller for large space structures(LSS) is studied from passivity point of view. While velocity sensors are commonly used for proportional-derivative (PD) control law to stabilize large space structures, if the structure can be controlled without velocity measurements, it is desirable against the failure of velocity sensors and for the cost reduction of the sensing system. In a recent result a dynamic output feedback control law has been provided using only displacement measurements. This paper presents a passivity-based controller design method and provides an alternative stability analysis tool for the previous displacement feedback robust control law. The closed-loop system can be viewed as a feedback interconnection of a passivated large space structure (LSS) and a strictly positive real (SPR) system.

수동화 기법에 의한 비정방 선형 시스템의 강인 제어기 설계 (Robust Controller Design for Non-square Linear Systems Using a Passivation Approach)

  • 손영익
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.907-915
    • /
    • 2002
  • We present a state-space approach to design a passivity-based dynamic output feedback control of a finite collection of non-square linear systems. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating (i.e. rendering passive) control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedfornward compensator (PFC) is given by the static output feedback fomulation, which enables to utilize linear matrix inequality (LMI). The effectiveness of the proposed method is illustrated by some examples including the systems which can be stabilized by the proprotional-derivative (PD) control law.

Adaptive control for robot manipulators exeeuting fine motion tasks

  • Parra-Vega, Vicente;Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.183-188
    • /
    • 1994
  • A passivity-based adaptive controller for robots executing fine motion tasks is proposed. The robot dynamics is modelled such that it is subject to holonomic constraints and hence it can be treated as a particular case of constrained motion tasks. Energy-motivated stability analysis is used to conclude the asymptotic stability. Remarks regarding the structure of the controller are given. A computer simulations study is presented and a robust constraint stabilization algorithm is also proposed.

  • PDF

On the Design Method of a Haptic Interface Controller with Virtual Coupling

  • Kim, Keehoon;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.25.5-25
    • /
    • 2001
  • A haptic interface can be a passive system with virtual coupling as a filter virtual coupling has been designed for satisfying passivity. However, it affects transparency of haptic interface as well as stability. This paper suggests new design criterion of a haptic interface controller by considering transparency. As a result, sampling time and the range of impedance or admittance should be considered as well as virtual coupling for desired performance of hapticdisplay. And experiments show that the suggested design criterion can be applied successfully for desired performance.

  • PDF

상지 근력 보조용 착용형 외골격 로봇의 수동성 기반 적응 제어와 최적화 기법 (Passivity Based Adaptive Control and Its Optimization for Upper Limb Assist Exoskeleton Robot)

  • 압둘마난칸;지영훈;미안아쉬팍알리;한정수;한창수
    • 한국정밀공학회지
    • /
    • 제32권10호
    • /
    • pp.857-863
    • /
    • 2015
  • The need for human body posture robots has led researchers to develop dexterous design of exoskeleton robots. Quantitative techniques to assess human motor function and generate commands for robots were required to be developed. In this paper, we present a passivity based adaptive control algorithm for upper limb assist exoskeleton. The proposed algorithm can adapt to different subject parameters and provide efficient response against the biomechanical variations caused by subject variations. Furthermore, we have employed the Particle Swarm Optimization technique to tune the controller gains. Efficacy of the proposed algorithm method is experimentally demonstrated using a seven degree of freedom upper limb assist exoskeleton robot. The proposed algorithm was found to estimate the desired motion and assist accordingly. This algorithm in conjunction with an upper limb assist exoskeleton robot may be very useful for elderly people to perform daily tasks.

네트워크 표현을 이용한 트윈서보 시스템의 모델링과 강건 동기 동작 제어 (Modeling and Robust Synchronizing Motion Control of Twin-Servo System Using Network Representation)

  • 김봉근;최현택;정완균;서일홍;송중호
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.871-880
    • /
    • 2000
  • A twin-servo mechanism is used to increase the payload capacity and assembling speed of high precision motion control systems such as semiconductor chip mounters. In this paper, we focus on the modeling of the twin-servo system and propose its network representation. And also, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of the twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. The proposed control algorithm consists of separate feedback motion control algorithms for each driving system and a skew motion compensation algorithm. A robust tracking controller based on internal-loop compensation is proposed as a separate motion controller and its disturbance attenuation property is shown. The skew motion compensation algorithm is also designed to maintain the synchronizing motion during high speed operation, and the stability of the whole closed loop system is proved based on passivity theory. Finally, experimental results are shown to illustrate control performance.

  • PDF

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

PDSO tuning of PFC-SAC fault tolerant flight control system

  • Alaimo, Andrea;Esposito, Antonio;Orlando, Calogero
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.349-369
    • /
    • 2019
  • In the design of flight control systems there are issues that deserve special consideration and attention such as external perturbations or systems failures. A Simple Adaptive Controller (SAC) that does not require a-priori knowledge of the faults is proposed in this paper with the aim of realizing a fault tolerant flight control system capable of leading the pitch motion of an aircraft. The main condition for obtaining a stable adaptive controller is the passivity of the plant; however, since real systems generally do not satisfy such requirement, a properly defined Parallel Feedforward Compensator (PFC) is used to let the augmented system meet the passivity condition. The design approach used in this paper to synthesize the PFC and to tune the invariant gains of the SAC is the Population Decline Swarm Optimization ($P_DSO$). It is a modification of the Particle Swarm Optimization (PSO) technique that takes into account a decline demographic model to speed up the optimization procedure. Tuning and flight mechanics results are presented to show both the effectiveness of the proposed $P_DSO$ and the fault tolerant capability of the proposed scheme to control the aircraft pitch motion even in presence of elevator failures.