• Title/Summary/Keyword: passive heat exchanger

Search Result 39, Processing Time 0.024 seconds

Experimental Study on Design Verification of New Concept for Integral Reactor Safety System (일체형원자로의 신개념 안전계통 실증을 위한 실험적 연구)

  • Chung, Moon-Ki;Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Park, Choon-Kyung;Lee, Sung-Jae;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2053-2058
    • /
    • 2004
  • The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant.

  • PDF

An Architectural Study on the Improvement of Energy Efficiency of Public Institution - Focused on Public Office Buildings Remodeling of Passive Design Elements - (공공기관 에너지 효율등급 향상을 위한 적용 설계요소에 관한 연구 - 공공청사 리모델링시 패시브 디자인요소를 중심으로 -)

  • Cho, Jung-Chul;Park, Jae-Seung
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.4
    • /
    • pp.114-120
    • /
    • 2012
  • There are lots of buildings which were built before the Legislation on building energy rating system. Remodeling of the buildings would be required for an improvement of the building energy rating system was enforced by the government. In the Passive Building Design, Elements which will be used for the remodeling are Insulation, Window, External venetian blind, Heat exchanger. The Purpose of this study is to indicate a Method for the improvement of Energy saving by an analysis of Construction Cost, Cost Evaluation, Energy performance Efficiency in applied design elements. In this study, the remodeling of existing public buildings to improve energy efficiency rating was applied to extract the elements of design-specific energy performance, efficiency, and the application of the designs that has been analyzed. The results were as follows: applying the design-specific cost-effective investment that represents the economy (investment efficiency/%) surveyed the average insulation(7.0%), triple glazed windows(10.1%), double glazed windows(12.1%), external shading(24.5%), and Heat(77.2%) were analyzed in order to be more efficient. Analysis of the basis of information on the existing public buildings to improve energy efficiency rating for the remodeling depending on driving conditions at a degree of individual difference. The main effect, however, depending on economic investment, design elements, heat exchangers, external awning, double glazed windows, triple glazed windows, insulation, is recommended as review of the order shall be determined.

  • PDF

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

PERFORMANCE EVALUATION OF BUBBLE PUMP USED IN A PASSIVE SOLAR WATER HEATER SYSTEM

  • Xuesong, Li;Park, Gi-Tae;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2309-2314
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and flow-rates at various locations. The theory analysis of design bubble pump has been given and the experiment design has been included in the paper.

  • PDF

Corrosion Property Evaluation of Copper Alloy Tubes against Sea Water

  • Pang, Beilli;Ong, Sang-Kil;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.280-286
    • /
    • 2009
  • In this study, the corrosion property of copper alloy tubes in seawater has been investigated. Three copper alloys of nominal composition Cu-20Zn-2Al(Al-Brass), Cu-30Ni(CN70/30) and Cu-10Ni(CN90/10) were considered. The samples were immersed in 3%NaCl flowing solution at $90^{\circ}C$ for 30, 50 and 80 days. Corrosion rate of copper alloy tubes in 3%NaCl flowing solution was investigated by weight-loss measurements and electrochemical test. The CN70/30 showed lowest corrosion rate among three copper alloy tubes. Because of passive films formation, corrosion rates of three types of copper tubes were decrease with time. Surface characteristics of copper alloy tubes were analyzed by optical micrograph(OM), scanning electronic microscopy (SEM), energy dispersive X-ray analysis(EDAX) and X-ray diffraction patterns(XRD). CN70/30 showed partly pitting problem on the surface owing to high Fe content, even though having high resistant against corrosion. Cracks appeared on the surface of CN90/10 and CN70/30 after more than 50 days immersion, which could be derived from high nickel contents.

Performance evaluation of bubble pump used on solar water heating system

  • Xuesong, Li;Park, Gi-Tae;Kim, Pil-Hwan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.416-422
    • /
    • 2007
  • The application analysis of bubble pump on the domestic solar water heater system is presented. The system investigated in this study is a passive device, self pumping and self regulating. It was test to use the bubble pump on solar water heater system. The test experiment has been taken on the existed vacuum tube about the efficiency, working fluid temperature and pressure and circulated power. In order to check the working temperature and working pressure effectively, the bubble pump was test separated from the solar water heater. The equipment consists of the bubble pump, heater and heat exchanger. The main structure of bubble pump was design depend on the character of two phase flow. The complete system was instrumented to measure pressures, temperatures and their relationship with the solar radiation intensity. The theory analysis of design bubble pump has been given and the experiment result analysis has been included in the paper.

  • PDF

Dual Mode Phase-Shifted ZVS-PWM Series Load Resonant High-Frequency Inverter for Induction Heating Super Heated Steamer

  • Hisayuki Sugimura;Hidekazu Muraoka;Tarek Ahmed;Srawouth Chandhaket;Eiji Hiraki;Mutsuo Nakaoka;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.138-151
    • /
    • 2004
  • In this paper, a constant frequency phase shifting PWM-controlled voltage source full bridge-type series load resonant high-frequency inverter using the $4^{th}$ generation IGBT power modules is presented for innovative consumer electromagnetic induction heating applications, such as a hot water producer, steamer and super heated steamer. The bridge arm side link passive capacitive snubbers in parallel with each power semiconductor device and AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is evaluated and discussed on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency inverter topology, what is called, DE class type, including the variable-power variable-frequency regulation function can expand zero voltage soft switching commutation area even under low output power setting ranges, which is more suitable and acceptable for newly developed induction heated dual pack fluid heaters. Furthermore, even the lower output power regulation mode of this high-frequency load resonant tank inverter circuit is verified so that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF