• Title/Summary/Keyword: passive dispersion

Search Result 33, Processing Time 0.023 seconds

A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve (신뢰성 있는 분산곡선의 결정을 위한 수동표면파 측정 및 분석기법의 제안)

  • Yoon, Sung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.47-60
    • /
    • 2007
  • Conventional active surface wave measurements performed using a transient or continuous source are often limited in the maximum depth of penetration due to the difficulty of generating low-frequency energy with reasonably portable sources. This limitation may inhibit accurate seismic site response calculations because of the inability to define deeper subsurface structure. By measuring surface wave generated by passive sources including microtremors and cultural noise, it is possible to overcome this problem and develop soil stiffness profiles to much larger depth. Reliability of dispersion estimates from the passive surface wave measurements is critical to present reliable shear wave velocity profiles and can be improved by the measurements and analyses of passive surface waves based on correct understanding of systematic errors included in passive dispersion data. In this study, the systematic errors caused by poor wavenumber resolution and energy leakage into sidelobes in passive tests are mainly explored. Recommendations for reliable passive surface wave measurements and dispersion estimates are presented and illustrated at a site in San Jose, California, U.S.

A Study on the Pollutant Dispersion over a Mountain Valley Region (II) : Numerical Simulation (산악 계곡지형에서의 오염확산에 관한 연구(II) :수치해석)

  • Shim Woo-Sup;Kim Seogcheol;Yoo Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1060-1071
    • /
    • 2005
  • Passive gas dispersions over a 1/1000 scale terrain model at Eiffel type wind tunnel were reproduced by numerical simulation. Large eddy simulation was used to treat the sub-grid scale turbulences. The terrain features were represented by millions of point forces densely distributed over the solid surface using the virtual boundary method. The model simulations agreed very well with the experiments in a consistent fashion for all wind directions. The measured profiles of the wind speeds as well as the tracer gas concentrations were nicely simulated by the CFD model at most locations scattered over the model terrain. With scale factor adjusted and the thermal stratification effects incorporated, the CFD model was expected to provide reliable information on pollutant dispersions over the real complex terrains.

Surface Wave Method II: Focused on Passive Method (표면파 탐사 II: 수동 탐사법을 중심으로)

  • Cho, Sung Oh;Joung, Inseok;Kim, Bitnarae;Jang, Hanna;Jang, Seonghyung;Hayashi, Koich;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.14-25
    • /
    • 2022
  • The passive surface wave method measures seismic signals from ambient noises or vibrations of natural phenomena without using an artificial source. Since passive sources are usually in lower frequencies than artificial ones being able to ensure the information on deeper geological structures, the passive surface wave method can investigate deeper geological structures. In the passive method, frequency dispersion curves are obtained after data acquisition, and the dispersion curves are analyzed by assuming 1D-layered earth, which is like the method of active surface wave survey. However, when computing dispersion curves, the passive method first obtains and analyzes coherence curves of received signals from a set of receivers based on spatial autocorrelation. In this review, we explain how passive surface wave methods measure signals, and make data processing and interpretation, before analyzing field application cases.

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

  • Kang, Byoung-Wook;Lee, Kwanil;Lee, Sang Bae;Kim, Chul Han
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.436-441
    • /
    • 2014
  • We have demonstrated an amplified wavelength-division multiplexed (WDM) passive optical network (PON) by using broadband light source (BLS) seeded optical sources and chirped fiber Bragg gratings (FBGs) based dispersion compensators. Chirped FBGs located at central office (CO) were fabricated and used as channel-by-channel dispersion compensators in order to mitigate the dispersion-induced distortion of both downstream and upstream signals. Owing to a low insertion loss of chirped FBG based dispersion compensator, the optical signal-to-noise ratio (OSNR) of the downstream signal could be improved to be ~28 dB. Thus, we re-confirmed that an error-free transmission of 1.25 Gb/s signals over a 100 km single-mode fiber (SMF) link could be achieved with a proposed amplified WDM-PON architecture. We have also evaluated the impact of various noises on the system's performance, and found that the low OSNR of the downstream signal would be a main limiting factor on the maximum reach of the proposed amplified WDM-PON architecture. From the measured ~13 dB improvement in OSNR of the downstream signal compared to our previously-proposed dispersion compensating module based scheme, we believe that the proposed architecture can accommodate a reach of longer than 100 km SMF link easily.

Lagrangian Particle Model for Dense Gas Dispersion (고밀도 가스 확산 예측을 위한 라그란지안 입자 모델)

  • Ko, S.;Lee, C.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

Solid-State Laser Mode-Locking Near 1.25 μm Employing a Carbon Nanotube Saturable Absorber Mirror

  • Cho, Won-Bae;Choi, Sun-Young;Kim, Jun-Wan;Yeom, Dong-Il;Kim, Ki-Hong;Rotermund, Fabian;Lim, Han-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.56-60
    • /
    • 2011
  • We demonstrate passive mode-locking of a Cr:forsterite laser with a single-walled carbon nanotube saturable absorber mirror (SWCNT-SAM). Without compensation of intra-cavity dispersion, the self-mode-locked laser generates 11.7 ps pulses at a repetition rate of 86 MHz. The dispersion-compensated laser yields ultrashort pulses as short as 80 fs near $1.25\;{\mu}m$ at 78 MHz with average output powers up to 295 mW, representing the highest power ever reported for mode-locked solid-state lasers based on saturable absorption of SWCNTs in this spectral region.

Effect of Green Buffer Zone in Reducing Gaseous Air Pollutants in the Shiwha Industrial Area (시화공단 완충녹지대의 대기오염물질 저감 효과 분석)

  • Song Young-Bae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.90-97
    • /
    • 2006
  • The effects of a green buffer zone to protect a residential area from air pollution from industrial facilities and traffic was examined by analyzing the case of a green buffer zone in the Shiwha industrial complex. The green buffer zone is 175 m wide. The intent was to assess the dispersion patterns of atmospheric air pollutants and the reduction in concentration around the green buffer zone. To measure atmospheric sulfur dioxide$(SO_2)$ and nitrogen dioxide$(NO_2)$ concentration, badge-type passive samplers were used and set up at 76 locations in order to measure the concentration of air pollutants with respect to the spatial dispersion. The weighted mean values of $SO_2\;and\;NO_2$ concentration were $3\~57 ppb\;and\;18\~62 ppb$ and the differences among the green buffer zone, the industrial area and the residential areas were $0.7\~1.1 ppb$. Mean values of atmospheric concentrations of $NO_2$ were similar in industrial and, residential areas and the green buffer zone. Results of the study show that the effect of the green buffer zone on reducing the dispersion of air pollutants was very low. This study also recommends that micro-climate, i.e., wind direction should be considered as a factor for planning and design of green buffer zones.

Application of Passive Sampler in Validation and Calibration of Air Dispersion Model (대기확산모델의 검정 및 보정을 위한 Passive Sampler의 활용)

  • 김선태;김주인;김성근;배장영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.170-171
    • /
    • 1999
  • 대기 중 오염물질의 확산 및 미래의 예측을 위하여 대기확산모형을 많이 사용하고 있으며, 국내에서 사용하고 있는 대기확산모형의 대부분은 미국 EPA에서 보급하는 것을 사용하고 있다. 이 중에서 최근에 많이 사용하고 있는 단기모형으로는 기간과 지형이 고려되는 ISCST3 모형을 들 수 있다. 국내 모델의 사용에 있어서 가장 중요한 문제점은 모델의 검정과 보정을 위한 data의 부재를 들 수 있다.(중략)

  • PDF

On the use of the wave finite element method for passive vibration control of periodic structures

  • Silva, Priscilla B.;Mencik, Jean-Mathieu;Arruda, Jose R.F.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.299-315
    • /
    • 2016
  • In this work, a strategy for passive vibration control of periodic structures is proposed which involves adding a periodic array of simple resonant devices for creating band gaps. It is shown that such band gaps can be generated at low frequencies as opposed to the well known Bragg scattering effects when the wavelengths have to meet the length of the elementary cell of a periodic structure. For computational purposes, the wave finite element (WFE) method is investigated, which provides a straightforward and fast numerical means for identifying band gaps through the analysis of dispersion curves. Also, the WFE method constitutes an efficient and fast numerical means for analyzing the impact of band gaps in the attenuation of the frequency response functions of periodic structures. In order to highlight the relevance of the proposed approach, numerical experiments are carried out on a 1D academic rod and a 3D aircraft fuselage-like structure.