DOI QR코드

DOI QR Code

Surface Wave Method II: Focused on Passive Method

표면파 탐사 II: 수동 탐사법을 중심으로

  • Cho, Sung Oh (National Research Institute of Cultural Heritage) ;
  • Joung, Inseok (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jang, Hanna (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Jang, Seonghyung (Korea Institute of Geoscience and Mineral Resources) ;
  • Hayashi, Koich (Geometrics) ;
  • Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University/Department of Energy Resources and Geosystems Engineering, Sejong University)
  • 조성오 (국립문화재연구원) ;
  • 정인석 (세종대학교 에너지자원공학과) ;
  • 김빛나래 (세종대학교 에너지자원공학과) ;
  • 장한나 (세종대학교 에너지자원공학과) ;
  • 장성형 (한국지질자원연구원) ;
  • ;
  • 남명진 (세종대학교 에너지자원공학과/지구자원시스템공학과)
  • Received : 2022.01.04
  • Accepted : 2022.02.24
  • Published : 2022.02.28

Abstract

The passive surface wave method measures seismic signals from ambient noises or vibrations of natural phenomena without using an artificial source. Since passive sources are usually in lower frequencies than artificial ones being able to ensure the information on deeper geological structures, the passive surface wave method can investigate deeper geological structures. In the passive method, frequency dispersion curves are obtained after data acquisition, and the dispersion curves are analyzed by assuming 1D-layered earth, which is like the method of active surface wave survey. However, when computing dispersion curves, the passive method first obtains and analyzes coherence curves of received signals from a set of receivers based on spatial autocorrelation. In this review, we explain how passive surface wave methods measure signals, and make data processing and interpretation, before analyzing field application cases.

수동 표면파 탐사는 인공 송신원 없이 생활잡음 또는 자연 발생 소음 등을 송신원으로 이용해 탄성파 신호를 측정한다. 수동 송신원은 낮은 진동수 대역에서 발생하기 때문에 수동 표면파 탐사는 일반적인 능동 탐사법 보다 더 깊은 심도의 지질 정보를 확보할 수 있어 심부 부지 평가 분야에 많이 활용되고 있다. 수동 표면파 탐사 자료는 능동 표면파 탐사 자료 해석과 마찬가지로 자료 획득 후 진동수 분산곡선을 구하여 1차원으로 가정한 속도구조를 해석한다. 하지만 수동 표면파 탐사 자료는 송신원이 무작위로 발생한다는 특성 때문에 여러 수신기에서 측정된 신호들의 공간자기상관을(spatial autocorrelation) 이용해 수신 자료들의 일관성(coherence) 곡선을 구하고 이로부터 분산곡선을 구하게 된다. 이 기술보고에서는 수동 표면파 탐사 이론, 탐사 방법, 자료처리 기법을 살펴보고 실제 적용 사례를 분석한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 KETEP의 지원(No. 20194010201920)과 원자력안전위원회의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국원자력안전재단의 지원(No. 2109092-0121-WT112)으로 수행되었으며 이에 깊은 감사를 드립니다.

References

  1. Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin of the Earthquake Research Institute, 35, 415-456, https://oceanrep.geomar.de/id/eprint/43280
  2. Asten, M. W., and Henstridge, J. D., 1984, Array estimators and the use of microseisms for reconnaissance of sedimentary basins, Geophysics, 49, 1828-1837, https://doi.org/10.1190/1.1441596
  3. Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239-1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x
  4. Campillo, M., and Paul, A., 2003, Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549, doi: 10.1126/science.1078551
  5. Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE, 57(8), 1408-1418, doi: 10.1109/PROC.1969.7278
  6. Cheng, F., Xia, J., Luo, Y., Xu, Z., Wang, L., Shen, C., and Hu, Y., 2016, Multichannel analysis of passive surface waves based on crosscorrelations, Geophysics, 81(5), EN57-EN66, https://doi.org/10.1190/geo2015-0505.1
  7. Cheng, F., Xia, J., Xu, Y., Xu, Z., and Pan, Y., 2015, A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves, J. Appl. Geophy., 117, 126-135, doi: 10.1016/j.jappgeo.2015.04.005
  8. Czarny, R., Pilecki, Z., and Drzewinska, D., 2018, The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity, Journal of Sustainable Mining, 17(4), 209-214, https://doi.org/10.46873/2300-3960.1142
  9. Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., and Seed, R. B., 2000, New site coefficients and site classification system used in recent building seismic code provisions, Earthquake Spectra, 16(1), 41-67, https://doi.org/10.1193/1.1586082
  10. Eker, A. M., Akgun, H., and Kockar, M. K., 2012, Local site characterization and seismic zonation study by utilizing active and passive surface wave methods: A case study for the northern side of Ankara, Turkey, Eng. Geol., 151, 64-81, doi: 10.1016/j.enggeo.2012.09.002
  11. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., and Socco, V., 2018, Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project, Bulletin of Earthquake Engineering, 16(6), 2367-2420, https://link.springer.com/article/10.1007/s10518-017-0206-7
  12. Gerstoft, P., Sabra, K. G., Roux, P., Kuperman, W. A., and Fehler, M. C., 2006, Green's functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71(4), SI23-SI31, https://doi.org/10.1190/1.2210607
  13. Harba, P., Pilecki, Z., and Krawiec, K., 2019, Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface, Acta Geophysica, 67(6), 1875-1883, https://link.springer.com/article/10.1007/s11600-019-00344-9
  14. Hayashi, K., Martin, A., Hatayama, K., and Kobayashi, T., 2013, Estimating deep S-wave velocity structure in the Los Angeles Basin using a passive surface-wave method, The Leading Edge, 32(6), 620-626, https://doi.org/10.1190/tle32060620.1
  15. Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas, J. Phys. Earth, 33, 59-96, https://doi.org/10.4294/jpe1952.33.59
  16. Jung, J. H., and Kim, K. Y., 2017, Seismic responses of the Yedang dam in Korea using H/V spectral ratios of microtremors, J. Geol. Soc. Korea, 53(2), 265-275, https://doi.org/10.14770/jgsk.2017.53.2.265
  17. Kayen, R., Tao, X., Shi, L., and Shi, H., 2008, Shear Wave-Velocity Investigation of Soil Liquefaction Sites from the Tangshan, China M7.8 Earthquake of 1976 Using Active and Passive Surface Wave Methods, International Conference on Case Histories in Geotechnical Engineering. 29, https://scholarsmine.mst.edu/icchge/6icchge/session03/29
  18. Lacoss, R. T., Kelly, E. J., and Toksoz, M. N., 1969, Estimation of seismic noise structure using arrays, Geophysics, 34, 21-38, https://doi.org/10.1190/1.1439995
  19. Liaw, A. L., and McEvilly, T. V., 1979, Microseisms in geothermal exploration-Studies in Grass Valley, Nevada, Geophysics, 44, 1097-1115, https://doi.org/10.1190/1.1440998
  20. Ling, S., and Okada, H., 1993, An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors, Proceedings of the 89th SEGJ Conference, 44-48 (in Japanese).
  21. Lynch, R., Hollis, D., McBride, J., Arndt, N., Brenguier, F., Mordret, A., and Chisolm, D., 2019, Passive Seismic Ambient Noise Surface Wave Tomography Applied to Two Exploration Targets in Ontario, Canada, ASEG Extended Abstracts, 2019(1), 1-3, https://doi.org/10.1080/22020586.2019.12073192
  22. Matsushima, T., and Okada, H., 1990, Determination of deep geological structures under urban areas using long-period microtremors, Butsuri Tanko (Geophysical Exploration); (Japan), 43(1), https://www.osti.gov/etdeweb/biblio/6864457
  23. Moon, S. W., Subramaniam, P., Zhang, Y., Vinoth, G., and Ku, T., 2019, Bedrock depth evaluation using microtremor measurement: empirical guidelines at weathered granite formation in Singapore, Journal of Applied Geophysics, 171, 103866, https://doi.org/10.1016/j.jappgeo.2019.103866
  24. Okada, H., and Suto, K., 2003, The microtremor survey method. Society of Exploration Geophysicists, https://doi.org/10.1190/1.9781560801740
  25. Okada, S., Hayashi, K., Tomari, K., Inoue, M., and Fujino, T., 2003, Application of the surface-wave method to levee survey, Proceedings of the 38th Japan national conference on geotechnical engineering, 39-40, https://doi.org/10.11512/jiban.JGS38.0.39.0
  26. Roberts, J., Asten, M., Tsang, H. H., Venkatesan, S., Lam, N. T. K., and Chandler, A. M., 2004, Shear wave velocity profiling in Melbourne silurian mudstone using the spac method, In Proceedings of a Conference of the Australian Earthquake Engineering Society (AEES), Mount Gambier, South Australia. Submitted, https://www.researchgate.net/publication/237218179
  27. Setiawan, B., Jaksa, M., Griffith, M., and Love, D., 2016, Analysis of microtremor array measurement using the spatial autocorrelation (SPAC) method across the Adelaide City (No. 196). Research Report, doi: 10.13140/RG.2.2.13590.65601
  28. Shapiro, N. M., and Campillo, M., 2004, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31(7), https://doi.org/10.1029/2004GL019491
  29. Suzuki, H., and Hayashi, K., 2003, Shallow S-Wave Velocity Soundng Using The Microtremors Array Measurements And The Surface Wave Method, In 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-190), https://doi.org/10.3997/2214-4609-pdb.190.sur08
  30. Taipodia, J., Baglari, D., and Dey, A., 2018. Recommendations for generating dispersion images of optimal resolution from active MASW survey. Innovative Infrastructure Solutions, 3(14), 1-19, doi: 10.1007/s41062-017-0120-5
  31. Toni, M., Yokoi, T., and El Rayess, M., 2019, Site characterization using passive seismic techniques: A case of Suez city, Egypt, Journal of African Earth Sciences, 156, 1-11, doi: 10.1016/j.jafrearsci.2019.05.004
  32. van Dalen, K. N., Wapenaar, K., and Halliday, D. F, 2014, Surface wave retrieval in layered media using seismic interferometry by multidimensional deconvolution, Geophysical Journal International, 196(1), 230-242, https://doi.org/10.1093/gji/ggt389
  33. Wee, S. H., Kim, J. K., Yoo, S. H., and Kyung, J. B., 2015, A comparison study of the amplification characteristics of the seismic station near Yedang reservoir using background Noise, S-wave and Coda wave energy, Journal of the Korean Earth Science Society, 36(7), 632-642, https://doi.org/10.5467/JKESS.2015.36.7.632
  34. Yoon, S., and Rix, G. J., 2004, Combined active-passive surface wave measurements for near-surface site characterization, In 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-186), European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609-pdb.186.SUR03
  35. Yun, W. Y., Park, S. C., and Kim, K. Y., 2013, Near-surface Shear-wave Velocities Derived from Microtremors and Teleseismic Data at the Hwacheon Seismic Station, Geophys. and Geophys. Explor., 16(3), 190-195, https://doi.org/10.7582/GGE.2013.16.3.190