Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.1.14

Surface Wave Method II: Focused on Passive Method  

Cho, Sung Oh (National Research Institute of Cultural Heritage)
Joung, Inseok (Department of Energy & Mineral Resources Engineering, Sejong University)
Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University)
Jang, Hanna (Department of Energy & Mineral Resources Engineering, Sejong University)
Jang, Seonghyung (Korea Institute of Geoscience and Mineral Resources)
Hayashi, Koich (Geometrics)
Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University/Department of Energy Resources and Geosystems Engineering, Sejong University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.1, 2022 , pp. 14-25 More about this Journal
Abstract
The passive surface wave method measures seismic signals from ambient noises or vibrations of natural phenomena without using an artificial source. Since passive sources are usually in lower frequencies than artificial ones being able to ensure the information on deeper geological structures, the passive surface wave method can investigate deeper geological structures. In the passive method, frequency dispersion curves are obtained after data acquisition, and the dispersion curves are analyzed by assuming 1D-layered earth, which is like the method of active surface wave survey. However, when computing dispersion curves, the passive method first obtains and analyzes coherence curves of received signals from a set of receivers based on spatial autocorrelation. In this review, we explain how passive surface wave methods measure signals, and make data processing and interpretation, before analyzing field application cases.
Keywords
surface wave method; passive survey method; spatial autocorrelation (SPAC);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Asten, M. W., and Henstridge, J. D., 1984, Array estimators and the use of microseisms for reconnaissance of sedimentary basins, Geophysics, 49, 1828-1837, https://doi.org/10.1190/1.1441596   DOI
2 Setiawan, B., Jaksa, M., Griffith, M., and Love, D., 2016, Analysis of microtremor array measurement using the spatial autocorrelation (SPAC) method across the Adelaide City (No. 196). Research Report, doi: 10.13140/RG.2.2.13590.65601
3 Lacoss, R. T., Kelly, E. J., and Toksoz, M. N., 1969, Estimation of seismic noise structure using arrays, Geophysics, 34, 21-38, https://doi.org/10.1190/1.1439995   DOI
4 Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bulletin of the Earthquake Research Institute, 35, 415-456, https://oceanrep.geomar.de/id/eprint/43280
5 Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., and Yang, Y., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239-1260, https://doi.org/10.1111/j.1365-246X.2007.03374.x   DOI
6 Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis, Proceedings of the IEEE, 57(8), 1408-1418, doi: 10.1109/PROC.1969.7278   DOI
7 Campillo, M., and Paul, A., 2003, Long-range correlations in the diffuse seismic coda. Science, 299(5606), 547-549, doi: 10.1126/science.1078551   DOI
8 Czarny, R., Pilecki, Z., and Drzewinska, D., 2018, The application of seismic interferometry for estimating a 1D S-wave velocity model with the use of mining induced seismicity, Journal of Sustainable Mining, 17(4), 209-214, https://doi.org/10.46873/2300-3960.1142   DOI
9 Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., and Socco, V., 2018, Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project, Bulletin of Earthquake Engineering, 16(6), 2367-2420, https://link.springer.com/article/10.1007/s10518-017-0206-7   DOI
10 Cheng, F., Xia, J., Luo, Y., Xu, Z., Wang, L., Shen, C., and Hu, Y., 2016, Multichannel analysis of passive surface waves based on crosscorrelations, Geophysics, 81(5), EN57-EN66, https://doi.org/10.1190/geo2015-0505.1   DOI
11 Kayen, R., Tao, X., Shi, L., and Shi, H., 2008, Shear Wave-Velocity Investigation of Soil Liquefaction Sites from the Tangshan, China M7.8 Earthquake of 1976 Using Active and Passive Surface Wave Methods, International Conference on Case Histories in Geotechnical Engineering. 29, https://scholarsmine.mst.edu/icchge/6icchge/session03/29
12 Ling, S., and Okada, H., 1993, An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors, Proceedings of the 89th SEGJ Conference, 44-48 (in Japanese).
13 Lynch, R., Hollis, D., McBride, J., Arndt, N., Brenguier, F., Mordret, A., and Chisolm, D., 2019, Passive Seismic Ambient Noise Surface Wave Tomography Applied to Two Exploration Targets in Ontario, Canada, ASEG Extended Abstracts, 2019(1), 1-3, https://doi.org/10.1080/22020586.2019.12073192   DOI
14 Okada, H., and Suto, K., 2003, The microtremor survey method. Society of Exploration Geophysicists, https://doi.org/10.1190/1.9781560801740
15 Jung, J. H., and Kim, K. Y., 2017, Seismic responses of the Yedang dam in Korea using H/V spectral ratios of microtremors, J. Geol. Soc. Korea, 53(2), 265-275, https://doi.org/10.14770/jgsk.2017.53.2.265   DOI
16 Gerstoft, P., Sabra, K. G., Roux, P., Kuperman, W. A., and Fehler, M. C., 2006, Green's functions extraction and surface-wave tomography from microseisms in southern California, Geophysics, 71(4), SI23-SI31, https://doi.org/10.1190/1.2210607   DOI
17 Hayashi, K., Martin, A., Hatayama, K., and Kobayashi, T., 2013, Estimating deep S-wave velocity structure in the Los Angeles Basin using a passive surface-wave method, The Leading Edge, 32(6), 620-626, https://doi.org/10.1190/tle32060620.1   DOI
18 Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas, J. Phys. Earth, 33, 59-96, https://doi.org/10.4294/jpe1952.33.59   DOI
19 Eker, A. M., Akgun, H., and Kockar, M. K., 2012, Local site characterization and seismic zonation study by utilizing active and passive surface wave methods: A case study for the northern side of Ankara, Turkey, Eng. Geol., 151, 64-81, doi: 10.1016/j.enggeo.2012.09.002   DOI
20 Harba, P., Pilecki, Z., and Krawiec, K., 2019, Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface, Acta Geophysica, 67(6), 1875-1883, https://link.springer.com/article/10.1007/s11600-019-00344-9   DOI
21 Liaw, A. L., and McEvilly, T. V., 1979, Microseisms in geothermal exploration-Studies in Grass Valley, Nevada, Geophysics, 44, 1097-1115, https://doi.org/10.1190/1.1440998   DOI
22 Suzuki, H., and Hayashi, K., 2003, Shallow S-Wave Velocity Soundng Using The Microtremors Array Measurements And The Surface Wave Method, In 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-190), https://doi.org/10.3997/2214-4609-pdb.190.sur08   DOI
23 Taipodia, J., Baglari, D., and Dey, A., 2018. Recommendations for generating dispersion images of optimal resolution from active MASW survey. Innovative Infrastructure Solutions, 3(14), 1-19, doi: 10.1007/s41062-017-0120-5   DOI
24 Toni, M., Yokoi, T., and El Rayess, M., 2019, Site characterization using passive seismic techniques: A case of Suez city, Egypt, Journal of African Earth Sciences, 156, 1-11, doi: 10.1016/j.jafrearsci.2019.05.004   DOI
25 Cheng, F., Xia, J., Xu, Y., Xu, Z., and Pan, Y., 2015, A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves, J. Appl. Geophy., 117, 126-135, doi: 10.1016/j.jappgeo.2015.04.005   DOI
26 Okada, S., Hayashi, K., Tomari, K., Inoue, M., and Fujino, T., 2003, Application of the surface-wave method to levee survey, Proceedings of the 38th Japan national conference on geotechnical engineering, 39-40, https://doi.org/10.11512/jiban.JGS38.0.39.0   DOI
27 Moon, S. W., Subramaniam, P., Zhang, Y., Vinoth, G., and Ku, T., 2019, Bedrock depth evaluation using microtremor measurement: empirical guidelines at weathered granite formation in Singapore, Journal of Applied Geophysics, 171, 103866, https://doi.org/10.1016/j.jappgeo.2019.103866   DOI
28 Matsushima, T., and Okada, H., 1990, Determination of deep geological structures under urban areas using long-period microtremors, Butsuri Tanko (Geophysical Exploration); (Japan), 43(1), https://www.osti.gov/etdeweb/biblio/6864457
29 Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B., Martin, G. R., and Seed, R. B., 2000, New site coefficients and site classification system used in recent building seismic code provisions, Earthquake Spectra, 16(1), 41-67, https://doi.org/10.1193/1.1586082   DOI
30 Shapiro, N. M., and Campillo, M., 2004, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31(7), https://doi.org/10.1029/2004GL019491   DOI
31 van Dalen, K. N., Wapenaar, K., and Halliday, D. F, 2014, Surface wave retrieval in layered media using seismic interferometry by multidimensional deconvolution, Geophysical Journal International, 196(1), 230-242, https://doi.org/10.1093/gji/ggt389   DOI
32 Yoon, S., and Rix, G. J., 2004, Combined active-passive surface wave measurements for near-surface site characterization, In 17th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems (pp. cp-186), European Association of Geoscientists & Engineers, https://doi.org/10.3997/2214-4609-pdb.186.SUR03   DOI
33 Wee, S. H., Kim, J. K., Yoo, S. H., and Kyung, J. B., 2015, A comparison study of the amplification characteristics of the seismic station near Yedang reservoir using background Noise, S-wave and Coda wave energy, Journal of the Korean Earth Science Society, 36(7), 632-642, https://doi.org/10.5467/JKESS.2015.36.7.632   DOI
34 Yun, W. Y., Park, S. C., and Kim, K. Y., 2013, Near-surface Shear-wave Velocities Derived from Microtremors and Teleseismic Data at the Hwacheon Seismic Station, Geophys. and Geophys. Explor., 16(3), 190-195, https://doi.org/10.7582/GGE.2013.16.3.190   DOI
35 Roberts, J., Asten, M., Tsang, H. H., Venkatesan, S., Lam, N. T. K., and Chandler, A. M., 2004, Shear wave velocity profiling in Melbourne silurian mudstone using the spac method, In Proceedings of a Conference of the Australian Earthquake Engineering Society (AEES), Mount Gambier, South Australia. Submitted, https://www.researchgate.net/publication/237218179