• Title/Summary/Keyword: passive damping system

Search Result 171, Processing Time 0.032 seconds

A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator (수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구)

  • Lee, Gil-Yong;Chang, Hee-Doh;Park, Young-Ho;Park, In-Hwang;Han, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.565-571
    • /
    • 2007
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진 테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Kwon, Hyeok-Jin;Jung, Jin-Hoon;Bae, Yoon-Hwa;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.831-836
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

  • PDF

A Study about Modeling and Control of Dynamic Absorber for Vehicle by Using Active Viscous Damping (능동적 점성감쇠를 이용한 차량용 동적 흡진기의 모델링과 제어에 관한 연구)

  • 김대원;배준영
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.121-130
    • /
    • 1999
  • Generally, A Dynamic Absorber by using Active viscous Damping is highlighted for effective suspension system, such as improved ride comfort and handling in the market. Lately, this system based on the Sky-Hook damper theory is introduced by the name of "Active Dynamic Absorber" to us. This system has an excellent performance in contrast to Passive. Adaptive Dynamic Absorber, besides having low cost components of system, low energy consumption. light weight of system. In this viewpoint. most of car-maker will adopt this system in the near future. For this reason, we developed Dynamic Absorber by using Active viscous Damping which is equipped with continuously variable Dynamic Absorber and Control logic consisting Filter and Estimator. control apparatus of Dynamic Absorber operated by 16-bit microprocessor of high performance. variable device of viscous Damping. G-sensor so on. In this paper. several important points of development procedure for realizing this system will be described with results in which is obtained from experiment by simulation and Full car test in Proving ground. respectively.pectively.

  • PDF

An Optimal Placement of passive Constrained Layer Damping Treatment for Vibration Suppression of Automotive Roof (차량루프의 진동저감을 위한 수동구속감쇠처리의 위치 최적화)

  • Lee, Ki-Hwa;Kim, Chan-Mook;Kang, Young-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.349-353
    • /
    • 2004
  • A study on optimal placement of constrained layer damping treatment for vibration control of automotive panels is presented. The effectiveness of damping treatment depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatment. From the equivalent modeling technique, it is found that the best damping performance occurs as the viscoelstic patch is placed by means of the modal strain energy method of bare structural panels to identify flexible regions, which in turn facilitates optimizations of damping treatment with respect to location and size. Different configurations of partially applied damping layer treatment have been analyzed for their effectiveness in realizing maximum system damping with minimum mass of the applied damping material. Moreover, simulated frequency response function of the automotive roof with and without damping treatments are compared, which show the benefits of applying damping treatment. Finally, the optimized damping treatment configuration is validated by comparing the locations and the size of the treatment with that of an experimental modal test conducted on roof compartment.

  • PDF

Performance Investigation of Semi-Active Damper Considering Mass Modeling of Functional Fluid (작동유체 질량을 고려한 유연우주트러스구조물 제진용 반능동 댐퍼의 성능분석)

  • Oh, Hyun-Ung;Choi, Young-Jun;Lee, Kyong-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.450-456
    • /
    • 2009
  • Semi-active vibration control is one of the attractive control methods for space application due to its robustness as passive damping system and much higher damping performance than passive system. In this paper, performance investigation of semi-active damper considering a mass modeling of functional fluid inside of the damper has been performed. Numerical investigation results confirmed that the damper model considering the fluid mass is effective for vibration suppression performance at a relatively low viscosity range of functional fluid. Based on the analysis results, design method to enhance the performance of semi-active damper has been proposed.

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Active-passive control of flexible sturctures using piezoelectric sensor/actuator (압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어)

  • 고병식
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF