• Title/Summary/Keyword: passive avoidance

Search Result 239, Processing Time 0.028 seconds

The Comparison of Perceived Stress and Coping Strategy between Patients with Gastric Ulcer and Those with Chronic Gastritis (위궤양환자들과 만성위염환자들간의 스트레스지각 및 대응전략의 비교)

  • Oh, Seung-Jun;Koh, Kyung-Bong
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • Objectives : The object of this study was to make a comparison regarding perceived stressor, perceived stress responses, and coping strategies between patients with gastric ulcer and patients with chronic gastritis. Subject and Methods : Subjects consisted of 40 patients with gastric ulcer and 100 patients with chronic superficial gastritis. Global assessment of recent stress(GARS) scale and perceived stress response inventory(PSRI) were used to measure perception for stressors and stress responses. Coping scale was used to measure coping strategies. Results : Scores of perceived stress related to work or job, changes in relationship on GARS scale were significantly higher in patients with gastric ulcer than those with chronic gastritis. Scores of perceived stress responses related to general somatic symptom, specific somatic symptom, passive-responsive and careless behavior on PSRI were significantly higher in patients with chronic gastritis than those with gastric ulcer. Scores of seeking social support, escape-avoidance on coping scale were significantly higher in patients with gastric ulcer than those with chronic gastritis. Conclusion : The above results suggest that perception for stressors were likely to be higher in patients with gastric ulcer than those with gastritis, whereas perception for stress responses were likely to be higher in the latter than the former. It is also suggested that patients with gastric ulcer were likely to use more dependent and passive coping strategies than patients with gastritis.

  • PDF

Frequency-Scanning Type Microwave Tag System Using Defected Ground Structures (결함 접지 구조를 이용한 주파수 스캐닝 방식의 마이크로파 태그 시스템)

  • Lee, Seok-Jae;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • In this paper, a microwave tag system of a frequency-scanning type is proposed with multi-resonators using defected ground structures. While a conventional chip-based RFID stores time-sequential codes, the proposed type achieves pure passive tags by using multi-resonant bits over a frequency range. Moreover, the resonators of the spiral defected ground structures implemented on the back side of transmission lines have advantages of the excellent bandstop characteristics as well as the bit-error avoidance by the re-radiation on normal resonators. The proposed microwave tag is designed with UWB antennas at 3~7 GHz. From the experimental results in an anechoic chamber, it has been verified of the excellent recognitions for various 5-bits identification codes.

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Ameliorative Effect of Aster scaber Thunberg and Chaenoleles sinensis Koehne Complex Extracts Against Oxidative Stress-induced Memory Dysfunction in PC12 Cells and ICR Mice (PC12세포와 동물모델에서의 기억력 장애를 유도하는 산화적스트레스에 대한 취나물과 모과 복합추출물의 개선 효과)

  • Park, Chan Kyu;Choi, Soo Jung;Shin, Dong Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.365-375
    • /
    • 2019
  • Background: Oxidative stress plays an important role in neuro-degenerative disorders such as Alzheimer's disease. Oxidative stress is mediated by reactive oxygen species (ROS), which are implicated in the pathogenesis of numerous diseases, and account for the toxicity of a wide range of compounds. Methods and Results: In order to study the neuro-protective effect of the complex extracts of Aster scaber Thunberg (AS) and Chaenoleles sinensis Koehne (CSK) against hydrogen peroxide in PC12 cells, cell viability was evaluated by the MTT assay using tetrazole, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the intracellular ROS levels were determined the by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. In order to examine the anti-amnesic effects of the complex extracts of AS and CSK, behavioral tests were performed on male ICR mice. The ameliorating effect of the complex extracts against Aβ1-42-induced learning and memory impairment was analyzed by y-maze and passive avoidance tests. The AS and CSK extracts showed neuro-protective activity both in vitro and in vivo, and the neuro-protective effect of their 60 : 40 (AS : CSK) mixture was better than that of the other mixtures. Moreover, the complex extracts synergistically inhibited acetylcholinesterase activity and rapid peroxidation. Conclusions: A mixture of the AS and CSK extracts could be used to develop functional foods and serve as raw materials for the development of therapeutics against Alzheimer's disease.

Effects of Chaenomeles speciose Nakai on Scopolamine Induced Memory Impaired Mouse Model (스코폴라민으로 유도한 기억력 장애 동물모델에서 명자나무(Chaenomeles speciose Nakai) 과실 추출물의 효과)

  • Kim, Jihyun;Kim, Ranhee;Kim, Jaehoon;Lim, Mi Kyung;Lee, Sang Ho;Han, Eun Hye;Jang, Dae Sik;Ryu, Jong Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • Chaenomeles speciose Nakai (CSP) or Chaenomeles sinensis Koehne (CSS) (Rosaceae) has been used, traditionally, to treat muscle problems and gastric dampness in eastern Asia countries. Therefore, many studies have focused on investigating its active compounds and effects on muscle pain, arthritis and gastro-intestinal diseases. Recently, several studies reported that CSS extract degrade amyloid plaques and enhance synaptic acetylcholine level in vivo and in vitro. Although these two Chaenomeles species are used without differences, CSP is reported to contains more phenolic compounds which are known to enhance memory. Therefore, in this study, we investigated the memory ameliorating effects of CSP by employing the passive avoidance test, Y-maze task and novel object recognition test. CSP (30 or 100 mg/kg) ameliorated the declined memory induced by scopolamine injection and enhanced the brain-derived neurotrophic factor (BDNF) levels along with post synaptic density protein 95 (PSD 95) levels at the hippocampus of the scopolamine-injected mouse brain. These results suggested that CSP alleviates the cognition declines caused by cholinergic blockade via enhancing BDNF levels and PSD 95, and that it would enhance memory formation and be useful for treating memory declines.

The Effect of Bee Venom on Scopolamine Induced Memorial Impairment (봉약침액(蜂藥鍼液)이 Scopolamine으로 유발(誘發)된 기억(記憶) 장애(障碍)에 미치는 영향(影響))

  • Song, Jeong-Yeon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.103-115
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the following 4 structural changes : Atrophy of the Cortex, Parasympathetic, and other neural cells, the existence of Neurofibrillary tangles (NFTs), and the accumulation of Senile plaques. NFTs and Senile plaques is known to be the index of this disease. Senile plaques disturbs the neutro transmission and depletes of Acetylcholine. So, Recovery of Acetylcholine is the primal objective for treating Alzheimer's disease. So, Inhibiting the activity of Acetylcholine Esterase (AChE), which causes the hydrolysus of acetylcholine into choline and acetate, can be seen as a key role for treating Alzheimer's disease. Increasing body of evidence has been demonstrated that Bee Venom Acupuncture (BV) could compete with complex protein involving in multiple step of $NF-_{\kappa}B$ activation and exert the anti -inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-_{\kappa}B$. The effect of BV through behavioral tests after memory impairment induced by Scopolamine. We examined the improving effect of BV on the Scopolamine (1 mg/Kg, i.p.)-induced memorial impairment using passive avoidance response and water maze tests in the mice. BV (0.84, $1.67\;{\mu}g/ml$) reversed the Scopolamine-induced memorial impairment in dose dependent manner. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

Neurotrophic Factors Mediate Memory Enhancing Property of Ethanolic Extract of Liriope platyphylla in Mice

  • Mun, Jung-Hyun;Lee, Sang-Gon;Kim, Dong-Hyun;Jung, Ji-Wook;Yoon, Byung-Hoon;Shin, Bum-Young;Kim, Sun-Ho;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.83-88
    • /
    • 2007
  • The roots of Liriope platyphylla (Liliaceae) are widely used in traditional Chinese medicine. In the present study, we investigated the effects of ethanol (70%) extract of the roots of Liriope platyphylla (ELP70) on learning and memory using behavioral and immunohistochemical methods in mice. Control animals were treated with vehicle (10% Tween 80). With sub-chronic treatments of ELP70 (p.o.) for 14 days, the latency time was significantly increased compared with that of the vehicle-treated control group (50, 100 and 200 mg/kg; P<0.05). Moreover, immunopositive cells for brain derived neurotrophic factor (BDNF) were significantly increased in the hippocapmpal dentate gyrus and CA1 regions after ELP70 treatments for 14 days (50, 100 and 200 mg/kg; P < 0.05). In addition, those cells for nerve growth factor (NGF) were also increased in the hippocapmpal dentate gyrus region (50, 100 and 200 mg/kg; P<0.05). These results suggest that the sub-chronic administration of ELP70 improves learning and memory, and that their beneficial effects are mediated, in part, by the enhancement of BDNF or NGF expression.

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.381-390
    • /
    • 2013
  • The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-1${\beta}$, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.

A low damage and ductile rocking timber wall with passive energy dissipation devices

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.9 no.1
    • /
    • pp.127-143
    • /
    • 2015
  • In conventional seismic design, structures are assumed to be fixed at the base. To reduce the impact of earthquake loading, while at the same time providing an economically feasible structure, minor damage is tolerated in the form of controlled plastic hinging at predefined locations in the structure. Uplift is traditionally not permitted because of concerns that it would lead to collapse. However, observations of damage to structures that have been through major earthquakes reveal that partial and temporary uplift of structures can be beneficial in many cases. Allowing a structure to move as a rigid body is in fact one way to limit activated seismic forces that could lead to severe inelastic deformations. To further reduce the induced seismic energy, slip-friction connectors could be installed to act both as hold-downs resisting overturning and as contributors to structural damping. This paper reviews recent research on the concept, with a focus on timber shear walls. A novel approach used to achieve the desired sliding threshold in the slip-friction connectors is described. The wall uplifts when this threshold is reached, thereby imparting ductility to the structure. To resist base shear an innovative shear key was developed. Recent research confirms that the proposed system of timber wall, shear key, and slip-friction connectors, are feasible as a ductile and low-damage structural solution. Additional numerical studies explore the interaction between vertical load and slip-friction connector strength, and how this influences both the energy dissipation and self-centring capabilities of the rocking structure.

Rehmannia glutinosa Ameliorates Scopolamine-Induced Learning and Memory Impairment in Rats

  • Lee, Bom-Bi;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.874-883
    • /
    • 2011
  • Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-$1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.