Browse > Article
http://dx.doi.org/10.4014/jmb.1104.04012

Rehmannia glutinosa Ameliorates Scopolamine-Induced Learning and Memory Impairment in Rats  

Lee, Bom-Bi (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
Shim, In-Sop (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
Lee, Hye-Jung (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.8, 2011 , pp. 874-883 More about this Journal
Abstract
Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-$1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.
Keywords
Scopolamine; memory; cholinergic neurons; proinflammatory cytokines; Rehmannia glutinosa;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kang, D. G., E. J. Sohn, M. K. Moon, Y. M. Lee, and H. S. Lee. 2005. Rehmannia glutinosa ameliorates renal function in the ischemia/reperfusion-induced acute renal failure rats. Biol. Pharm. Bull. 28: 1662-1667.   DOI   ScienceOn
2 Kim, H. M., C. S. An, K. Y. Jung, Y. K. Choo, J. K. Park, and S. Y. Nam. 1999. Rehmannia glutinosa inhibits tumor necrosis factor-alpha and interleukin-1 secretion from mouse astrocyte. Pharmacol. Res. 40: 171-176.   DOI   ScienceOn
3 Lee, B., J. Park, S. Kwon, M. W. Park, S. M. Oh, M. J. Yeom, I. Shim, H. J. Lee, and D. H. Hahm. 2010. Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62: 263-271.   DOI   ScienceOn
4 Heinrich, M. and H. I. Teoh. 2004. Galanthamine from snowdropthe development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J. Ethnopharmacol. 92: 147-162.   DOI
5 Jackson, J. J. and M. R. Soliman. 1996. Effects of tacrine (THA) on spatial reference memory and cholinergic enzymes in specific rat brain regions. Life Sci. 58: 47-54.
6 Jonasson, Z. 2005. Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data [Review]. Neurosci. Biobehav Rev. 28: 811-825.   DOI   ScienceOn
7 Eikelenboom, P., S. S. Zhan, W. A. van Gool, and D. Allsop. 1994. Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol. Sci. 15: 447-450.   DOI   ScienceOn
8 Griffin, W. S., J. G. Sheng, G. W. Roberts, and R. E. Mrak. 1995. Interleukin-1 expression in different plaque types in Alzheimer's disease: Significance in plaque evolution. J. Neuropathol. Exp. Neurol. 54: 276-281.   DOI   ScienceOn
9 Elvander, E., P. A. Schött, J. Sandin, B. Bjelke, J. Kehr, T. Yoshitake, and S. O. Ogren. 2004. Intraseptal muscarinic ligands and galanin: Influence on hippocampal acetylcholine and cognition. Neuroscience 126: 541-557.   DOI   ScienceOn
10 Giacobini, E. 2002. Long term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer's disease. J. Neural Transm. Suppl. 62: 181-187.
11 Hasselmo, M. E. 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 16: 710-715.   DOI   ScienceOn
12 Counts, S. E., B. He, S. Che, S. D. Ginsberg, and E. J. Mufson. 2008. Galanin hyperimmervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer's disease. Neurodegener. Dis. 5: 228-231.   DOI   ScienceOn
13 Ebert, U. and W. Kirch. 1998. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 28: 944-949.   DOI   ScienceOn
14 Dashniani, M. G., G. V. Beseliia, G. A. Maglakelidze, M. A. Burdzhanadze, and N. T. Chkhikwishvili. 2009. Effects of the selective lesions of cholinergic septohippocampal neurons on different forms of memory and learning process. Georgian Med. News 166: 81-85.
15 Drever, B. D., W. G. Anderson, H. Johnson, M. O'Callaghan, S. Seo, D. Y. Choi, G. Riedel, and B. Platt. 2007. Memantine acts as a cholinergic stimulant in the mouse hippocampus. J. Alzheimers Dis. 12: 319-333.   DOI
16 Dickson, D. W., S. C. Lee, L. A. Mattiace, S. H. Yen, and C. Brosnan. 1993. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7: 75-83.   DOI
17 Shors, T. J., T. B. Seib, S. Levine, and R. F. Thompson. 1989. Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244: 224-226.   DOI
18 Blennow, K., D. M. J. Leon, and H. Zetterberg. 2006. Alzheimer's disease [Review]. Lancet 368: 387-403.   DOI   ScienceOn
19 Blokand, A., E. Geraerts, and A. Been. 2004. A detailed analysis of rat's spatial memory in a probe trial of a Morris task. Behav. Brain Res. 154: 71-75.   DOI   ScienceOn
20 Sharma, D., M. Puri, A. K. Tiwary, N. Singh, and A. S. Jaggi. 2010. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J. Pharmacol. 42: 164-167.   DOI   ScienceOn
21 Liu, Y., F. Liu, Y. Zhao, W. H. Wu, and X. S. Wen. 2007. Compounds from Rehmannia glutinosa and their changes during the postharvest processing. World Phytomed. 22: 102- 108.
22 Mingaud, F., L. C. Moine, N. Etchamendy, C. Mormede, R. Jaffard, and A. Marighetto. 2007. The hippocampus plays a critical role at encoding discontiguous events for subsequent declarative memory expression in mice. Hippocampus 17: 264- 270.   DOI   ScienceOn
23 Mohamed, A. F., K. Matsumoto, K. Tabata, H. Takayama, M. Kitajima, and H. Watanabe. 2000. Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice: Elucidation using the passive avoidance test. J. Pharm. Pharmacol. 52: 1553-1561.   DOI   ScienceOn
24 Ling, F. A., D. Z. Hui, and S. M. Ji. 2007. Protective effect of recombinant human somatotropin on amyloid beta-peptide induced learning and memory deficits in mice. Growth Horm. IGF Res. 17: 336-341.
25 Zhang, Z. J. 2004. Therapeutic effects of herbal extracts and constituents in animal model of psychiatric disorders. Life Sci. 75: 1659-1699.   DOI   ScienceOn
26 Wei, J., D. X. Lu, R. B. Qi, H. D. Wang, and X. H. Jiang. 2010. Effect of Kangshiai Yizhi Formula I on learning and memory dysfunction induced by scopolamine in mice. Chin. J. Integr. Med. 16: 252-257.   DOI   ScienceOn
27 Yamada, M., T. Chiba, J. Sasabe, K. Terashita, S. Aiso, and M. Matsuoka. 2008. Nasal colivelin treatment ameliorates memory impairment related to Alzheimer's disease. Neuropsychopharmacology 33: 2020-2032.   DOI   ScienceOn
28 Zhang, X. L., B. Jiang, Z. B. Li, S. Hao, and L. J. An. 2007. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Pharmacol. Biochem. Behav. 88: 64-72.   DOI   ScienceOn
29 Tian, Y. Y., L. J. An, L. Jiang, Y. L. Duan, J. Chen, and B. Jiang. 2006. Catalpol protects dopaminergic neurons from LPSinduced neurotoxicity in mesencephalic neuron-glia cultures. Life Sci. 80: 193-199.   DOI   ScienceOn
30 Wang, Z., Q. Liu, R. Zhang, S. Liu, Z. Xia, and Y. Hu. 2009. Catalpol ameliorates beta amyloid-induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience 163: 1363-1372.   DOI   ScienceOn
31 Shahidi, S., A. Komaki, M. Mahmoodi, N. Atrvash, and M. Ghodrati. 2008. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res. Bull. 76: 109-113.   DOI   ScienceOn
32 Mohapel, P., G. Leanza, M. Kokaia, and O. Linvall. 2005. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol. Aging 36: 939-946.
33 Paxinos, G. and C. Watson. 1986. The Rat Brain in Stereotaxic Coordinates. New York, Academic Press.
34 Rothwell, N., S. Allan, and S. Toulmond. 1997. The role of interleukin 1 in acute neurodegeneration and stroke: Pathophysiological and therapeutic implications. J. Clin. Invest. 100: 2648-2652.   DOI   ScienceOn
35 Sharma, D., M. Puri, A. K. Tiwary, N. Singh, and A. S. Jaggi. 2010. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J. Pharmacol. 42: 164-167.   DOI   ScienceOn
36 Lorenzini, C. A., E. Baldi, C. Bucherelli, B. Sacchett, and G. Tassoni. 1996. Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat's passive avoidance response: A tetrodotoxin functional inactivation study. Brain Res. 730: 32-39.   DOI