• Title/Summary/Keyword: passive LED driver

Search Result 14, Processing Time 0.016 seconds

LED Driver with TRIAC Dimming Control by Variable Switched Capacitance for Power Regulation

  • Lee, Eun-Soo;Sohn, Yeung-Hoon;Nguyen, Duy Tan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.555-566
    • /
    • 2015
  • A TRIAC dimming LED driver that can control the brightness of LED arrays for a wide range of source voltage variations is proposed in this paper. Unlike conventional PWM LED drivers, the proposed LED driver adopts a TRIAC switch, which inherently guarantees zero current switching and has been proven to be quite reliable over its long lifetime. Unlike previous TRIAC type LED drivers, the proposed LED driver is composed of an LC input filter and a variable switched capacitance, which is modulated by the TRIAC turn-on timing. Thus, the LED power regulation and dimming control, which are done by a volume resistor in the same way as the conventional TRIAC dimmers, can be simultaneously performed by the TRIAC control circuit. Because the proposed LED driver has high efficiency and a long lifetime with a high power factor (PF) and low total harmonic distortion (THD) characteristics, it is quite adequate for industrial lighting applications such as streets, factories, parking garages, and emergency stairs. A simple step-down capacitive power supply circuit composed of passive components only is also proposed, which is quite useful for providing DC power from an AC source without a bulky and heavy transformer. A prototype 60 W LED driver was implemented by the proposed design procedure and verified by simulation and experimental results, where the efficiency, PF, and THD are 92%, 0.94, and 6.3%, respectively. The LED power variation is well mitigated to below ${\pm}2%$ for 190 V < $V_s$ < 250 V by using the proposed simple control circuit.

Highly AC Voltage Fluctuation-Resistant LED Driver with Sinusoid-Like Reference

  • Ning, Ning;Tong, Zhenxiao;Yu, Dejun;Wu, Shuangyi;Chen, Wenbin;Feng, Chunyi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • A novel converter-free AC LED driver that is highly resistant to the fluctuation of AC voltage is proposed in this study. By removing large passive components, such as the bulky capacitor and the large-value inductor, the integration of the driver circuit is enhanced while the driving current remains stable. The proposed circuit provides LED lamps with a driving current that can follow the sinusoid waveform to obtain a very high power factor (PF) and low total harmonic distortion (THD). The LED input current produced by this driving current is insensitive to fluctuations in the AC voltage. Users will thus not feel that LED lamps are flashing during the fluctuation. Experiment results indicate that the proposed system can obtain PF of 0.999 and THD as low as 3.3% for a five-string 6 W LED load under 220 V at 50 Hz.

Development of the Hybrid EMI Filter for DC-DC Converter (DC-DC 전력변환장치용 Hybrid EMI 필터 개발)

  • Lee, Dong-Ho;Yoo, Jin-Wan;Park, Chong-Yeun
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.71-78
    • /
    • 2014
  • Recently, using the electronic devices was increased with semiconductor developments. So, the EMI(Electromagnetic interference) problem become to important issue for coexistence with each electronic devices. The EMI is caused by switching operation from the power switches as the FET and the transistor in power conversion devices. In this paper, the hybrid EMI filter that composed with active components and passive components was described. The EMI filter is applied to the 160 watts LED driver experimentally verify the performance. The hybrid EMI filter is compared with non-filter, only passive filter and only active filter. The proposed EMI filter attenuated CM noise more than traditional passive filter.

  • PDF

A Study on LED Driver Compatible with Triac-dimmer Employing Active Bleeder (능동 블리더 회로를 적용한 조광기 호환용 LED 구동회로에 관한 연구)

  • Yeom, Bong-Ho;Kim, Teak-Woo;Kim, Ju-Rae;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.159-160
    • /
    • 2013
  • 본 논문에서는 백열등 조도 조절용 조광기에 호환 가능한 LED 구동회로를 제안한다. 조광기와 일반적인 LED 구동회로를 연결할 경우 트라이악(Triac)의 오동작에 의해 플리커(Flicker) 현상이 발생하는 문제점을 지니고 있다. 트라이악의 오동작을 방지하기 위해서는 트라이악에 일정 크기 이상의 전류가 인가되어야 하며 이를 만족하기 위한 조광기 호환회로가 필수적이다. 이러한 호환회로로써 수동 블리더(Passive Bleeder)는 전 동작 구간에서 전력소모가 발생하는 단점을 지니고 있다. 본 논문의 제안회로는 역률 만족을 위 해 Valley-fill 회로를 적용하였으며 트라이악의 오동작 시점을 정확히 검출하여 새로운 방식의 능동 블리더(Active Bleeder)를 적용함으로써 조광기의 오동작을 방지하면서 수동 블리더에 비해 효율이 개선되는 장점을 지닌다. 또한, Valley-fill과 인덕터를 적용한 1단 구성으로 효율개선 및 역률 개선의 장점과 입력 전류 리플의 감소로 인한 EMI 노이즈 저감 효과를 나타낸다. 본 논문에서는 제안된 회로의 타당성을 검증하기 위하여 13W급 조명용 LED 구동회로의 시작품 제작을 통해 그 우수성을 확인한다.

  • PDF