• 제목/요약/키워드: passenger cabin

검색결과 141건 처리시간 0.024초

항공기 승객용 화학적 비상산소 공급 및 조명시스템에 대한 연구 (Research for the Chemical Emergency Oxygen Supply and Lighting System for Aircraft Passengers)

  • 김영인
    • 한국항공운항학회지
    • /
    • 제30권2호
    • /
    • pp.55-60
    • /
    • 2022
  • A PSU (passenger service unit) is mounted on passenger seats in a cabin on an aircraft and consists of a crew call lamp, a reading lights, an information display lamp, an emergency oxygen generator, and an emergency oxygen mask. It is a safety device for providing convenience to passengers and providing oxygen to passengers in an emergency. This paper is a study on emergency oxygen supply systems and light systems of aircraft PSUs and a control device was developed to operate the system by analyzing the B767-300 aircraft's PSU circuit diagram. And the temperature generated by the B777-200ER aircraft's emergency oxygen generator was also measured by operating it directly. Through this, precautions for explaining the operation of an oxygen mask in an emergency were described and improvements were presented. Data acquired in these research processes can be used in the future to develop aircraft PSU (passenger service unit) and emergency oxygen generators.

난방기 출력에 따른 철도차량 객실 내부 온도 분포 분석 (Study on the Temperature Distribution of Cabin under Various Car Heating Modes)

  • 조영민;윤영관;박덕신;김태욱;권순박;정우성;김희만
    • 한국철도학회논문집
    • /
    • 제15권6호
    • /
    • pp.558-565
    • /
    • 2012
  • 최근 기후변화에 따른 이상 기상현상이 증가하고 있는데, 특히 동절기의 혹한은 승객의 열적 쾌적성을 크게 저하할 우려가 있다. 이에 본 연구에서는 철도차량 실대형 환경챔버를 이용하여 저온 조건에서 철도차량의 난방장치 가동시 객실 내부의 온도변화 및 분포를 알아보았다. 실험결과 난방시스템 가동 직후에는 객실 내부온도가 급격하게 증가하였으나, 일정 시간 경과 후에는 더 이상 증가하지 않았으며, 객실의 위쪽이 아래쪽보다 온도가 더 높게 나타났다. 이러한 결과들을 통해 승객의 온열 쾌적감 저하를 최소화할 수 있는 방안을 제시하고자 하였다.

인버터를 통한 냉방제어시스템 (The Cooling control system with inverter)

  • 문준수;우이완;박재홍
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.43-48
    • /
    • 2011
  • Cooling system's operation ratio shall be controlled automatically by the internal external temperature sensors in rolling stock. The Cooling System shall be the automatic operation ratio control system which automatically controlling the rotation speed of condenser, evaporator etc. using temperature detection from outside and inside of cabin. This paper will examine the cooling system that can be provide comfortable cooling service for passenger in summer.

  • PDF

진동-음향 연성계의 구조-유체 상호작용 (Structure-Fluid Interaction in a Coupled Vibroacoustic System)

  • 최성훈;김진오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.135-141
    • /
    • 1996
  • Numerical analysis techniques have been applied to obtain the vibroacoustic characteristics of the simplified model of a passenger-car cabin. Two kinds of coupled vibration-acoustic analysis, such as one-way coupling and full coupling, have been carried out via the interface between the results of vibration analysis by FEM and acoustic analysis by BEM. The comparison of two coupled analysis results show the fluid-structure interaction in terms of the coupled effect of the vibration and noise.

  • PDF

광음향기법을 이용한 한국형 고속전철의 실내소음 예측 (Interior noise prediction of the high speed train using ray method)

  • 김관주;박진규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.157-164
    • /
    • 2000
  • This study is about predicting the interior pressure level of the korean high speed train using ray acoustic method. The motor car and the motor and passenger cabin are investigated under the environment of passing open countryside and inside tunnel of 350 km/hr. Calculated sound levels are compared with the proposed sound levels and suggestions about the transmission Joss values of isolating panels inside motor car and the guide lines of allowed sound power limit of motor equipments are provided. Results of TPI car show calculated interior sound level is below the proposed values for both cases of open countryside running and inside tunnel. Since ray acoustic method calculated only air borne noise component, real sound level of the motor car may be higher than prediction. Passenger cabins of TMI, TM5 show higher sound level than the proposed values, so window method was carried out to find the contribution of each panel components and point out the remedy of transmission path. Reduction of sound power of motor equipments should be condisered at the same time.

  • PDF

철도차량 HVAC시스템의 광플라즈마 성능평가 (Efficiency of Photoplasma of HVAC System for Train)

  • 한환수;전승기;박태영;김봉상;박덕신;권순박
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1293-1296
    • /
    • 2007
  • An amenity requirement of the passenger using public traffic is rising continuously, and also The Ministry of Environment established "Indoor air quality management guidelines in public facilities(Dec. 2006)". To satisfy such requirement, the photoplasma device to decrease VOCs(Volatile Organic Compounds) and suspended bacillus is applied to the underframe mounted HVAC(Heating, Ventilating and Air-Conditioning) system for train. Air purifying method of photoplasma device is optical and chemical reaction that UV-light(wavelength less than 280nm) react with catalyst material(TiO2). To analyze the efficiency of photoplasma in this study, we measured the requirement time for toluene to decease down to 0.3ppm after contaminating the passenger cabin for train to toluene 1ppm.

  • PDF

KTX차량 객실내외의 압력변동특성에 관한 실험적 연구 (Experimental Study on the Characteristics of the Inside and Outside Pressure Variation for KTX)

  • 남성원;홍현주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.281-286
    • /
    • 2003
  • Experimental study is conducted to clarify the inside and outside pressure variation of passenger cabin for KTX. These pressure variation may give rise to the ear-discomfort. Generally ear-discomfort has been considered as a problem related to high speed train. In this study, the pressure variation of interior, gangway and exterior of KTX passenger car is measured by using the atmospheric pressure sensors and portable data acquisition system. The tunnel from 4000m to 200m in length are chosen for the investigation of length effects. From the results of experiment, the pressure variation of interior per second is under the ear-discomfort limitation in all of tunnel. And, We found that there is a similar pattern of exterior pressure variation. These results generally agree with RTRI's experimental result for Shinkansen.

  • PDF

In-Vehicle Levels of Naphthalene and Monocyclic Aromatic Compounds According to Vehicle Type

  • Jo, Wan-Kuen;Lee, Jong-Hyo
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.180-185
    • /
    • 2009
  • Only limited information is available as regards to the exposure levels of naphthalene (polycyclic aromatic hydrocarbons, PAHs) and monocyclic aromatic hydrocarbons(MAHs) in the interiors of diesel-fueled passenger cars, while many studies investigated the exposure levels of various volatile organic compounds(VOCs) in the interiors of gasoline-fueled passenger cars or public buses. Present study was performed to supplement this deficiency by measuring naphthalene (as a representative of PAHs) and MAHs levels inside five diesel-fueled and five gasoline-fueled passenger cars while morning and evening commuting on real roadways. Each car was surveyed five times on different sampling days. The in-vehicle naphthalene levels were higher for the diesel-fueled cars as compared to gasoline-fueled cars, whereas the results were reversed for the in-vehicle MAH levels. The median cabin levels of diesel-fueled cars were 1.3, 7, 13, 4, and 6 ${\mu}g/m^3$ for naphthalene, benzene, toluene, ethyl benzene, and m,pxylene, respectively. With respect to gasoline-fueled cars, their respective levels were 0.7, 11, 21, 7, and 9 ${\mu}g/m^3$ . The median MAHs concentration ratios of gasoline-fueled cars to diesel-fueled cars ranged from 1.50 to 1.75, while the median naphthalene concentration ratio was estimated to be 0.54. In addition, there was no significant difference of both naphthalene and MAHs between the diesel-fueled cars, but the in-vehicle levels were significantly different between gasoline-fueled cars. The concentration levels of both naphthalene and MAHs were higher in the passenger cars than other non-industrial microenvironments. Consequently, it was confirmed that the cabins of both diesel-fueled and gasoline-fueled passenger cars are an important microenvironment associated with the exposure to naphthalene and MAHs.