• Title/Summary/Keyword: particulate

Search Result 2,906, Processing Time 0.029 seconds

Application of Dissolved Air Flotation Technique to Improve Eutrophic Reservoir Water Quality (가압부상법을 이용한 부영양저수지의 수질개선)

  • Kim, Ho-Sub;Jung, Dong-Il;Lee, Il-Kuk;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.372-381
    • /
    • 2005
  • This study was conducted to test the efficiency of water quality improvement using the dissolved air flotation (DAF) technique in a shallow eutrophic reservoir. The application of DAF was followed by the addition of a chemical coagulant (poly aluminum chloride; PAC). The experiment was conducted in the mesocosm scale (wide ${\times}$ length ${\times}$ depth: 6 m ${\times}$ 6 m ${\times}$ 3 m). Suspended solids (SS) and volatile SS (VSS) concentration decreased by 54 ${\sim}$ 71% and 57 ${\sim}$ 79% of the initial concentrations, respectively. Total phosphorus and Chl- a concentration also decreased by 74 ${\sim}$ 92% and 54 ${\sim}$ 98%, respectively. BOD decreased by>86% while COD decrease ranged 29 ${\sim}$ 63%. Dissolved inorganic P (DIP) and dissolved total P (DTP) concentration decreased by 34 ${\sim}$ 88% and 62 ${\sim}$ 88%, respectively. After DAF application further onto the sediment, DIP-release rates from the sediment decreased by 17% (0.82 ${\to}$ 0.68 mg $m^{-2}$$day^{-1}$ in the oxic condition and 23% (2.27 ${\to}$ 1.76 mg $m^{-2}$$day^{-1}$) in the anoxic condition, compared to the release rate from the untreated sediment. DTP-release rate from both the oxic and anoxic sediments also decreased by 33% (5.62 ${\to}$ 3.78 mg $m^{-2}$$day^{-1}$) and 20% (6.23 ${\to}$ 4.99 mg $m^{-2}$$day^{-1}$), respectively. These results suggest that the DAF application both to the water column and onto the sediment be effective to improve water quality by removing particulate matters in the water column as well as reducing P-release from the sediment.

Allochthonous Organic Matter Contribution to Foodweb in Shingu Agricultural Researvoir after Rainfall Period (강우기 후 신구 농업용 저수지 먹이망에 미치는 외부기원 유기물의 영향 - 안정동위원소비 활용 -)

  • Kim, Min-Seob;Lee, Yeon-Jung;An, Kwang-Guk;Kim, Baik-Ho;Hwang, Soon-Jin;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • The origin of particulate organic matter (POM) and food web structure were investigated in Shingu reservoir based on stable isotope analysis from pre-monsoon (July) to post-monsoon (September) 2007. According to the depth in Shingu reservoir, the $^{13}C$ and $^{15}N$ values of POM for pre-monsoon period were nonsignificant distinction, while it was significant variation after rainfall period. The ${\delta}^{13}C$ values of POM in premonsoon period ranged from -25.1‰ to -26.1‰ in whole water column, but the ${\delta}^{13}C$ values of POM in post-monsoon period showed relatively wide range between -23.2‰ and -27.5‰. The apparently lighter values (average -27.5‰) in near bottom water (7 m water depth) demonstrate that POM in high turbid water in post-monsoon period may be derived from the outside terrestrial plants (allochthonous) through heavy rainfall during the summer monsoon period. After rainfall period, $^{13}C$ and $^{15}N$ values of D. brachyurum showed -23.3‰ and 12.2‰, respectively, while B. longirostris showed -27.1% and 8.7%, respectively. It suggested that D. brachyurum mainly feed on POM in autochthonous organic matter pool, but B. longirostris mainly consumed POM in allochthonous organic matter pool after rainfall period. Carbon and nitrogen stable isotope ratios were markedly different among secondary consumers. The carp (C. carpio) and catfish (S. asotus) were in the higher trophic level and crucian carp (C. auratus) and mudfish (M. mizolepis) were in the lower trophic level. $^{13}C$ and $^{15}N$ values of Z. platypus didn't significantly changed between before and after rainfall period. But P. parva and C. auratus apparently changed the $^{13}C$ and $^{15}N$ values after rainfall period. It is suggested that P. parva and C. auratus seem to feed allochthonous food source while Z. platypus depend on autochthonous food source.

Influence of Climate Factors and PM10 on Rotaviral Infection: A Seasonal Variation Study (Rotavirus 감염의 연도별 유행시기의 변동양상 및 기후요소와 PM10과의 관계)

  • Im, Hae-Ra;Jeon, In-Sang;Tchah, Hann;Im, Jeong-Soo;Ryoo, Eell;Sun, Yong-Han;Cho, Kang-Ho;Im, Ho-Joon;Lee, Gwang-Hoon;Lee, Hak-Soo;Kang, Yune-Jeung;Noh, Yi-Gn
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.6 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • Purpose: Recently, while the authors were experiencing that the epidemic period of rotaviral infection happened more in the early spring, we tried to find out how the outbreaks of rotaviral infection are changing in detail depending on the weather condition since it has something to do with the climate factors and PM10. Methods: Fourteen hundreds seventy nine patients who were proved to be positive to rotavirus were chosen among children less than 5 years old from January 1995 to June 2003. Among various climate factors, monthly average temperature, humidity, rainfall and PM10 were selected. Results: Rotaviral infection was most active in 2002 as 309 (20.9%) patients. It has been the spring that is the most active period of rotaviral infection since 2000. The temperature (RR=0.9423, CI=0.933424~0.951163), rainfall (RR=1.0024, CI=1.001523~1.003228) and PM10 (RR=1.0123, CI=1.009385~1.015248) were significantly associated with the monthly distribution of rotaviral infection. Conclusion: Through this study we determined that the epidemic period of rotaviral infection is changed to spring, which is different from the usual seasonal periods such as late fall or winter as reported in previous articles. As increased PM10 which could give serious influence to the human body, and changing pattern of climate factors such as monthly average temperature and rainfall have something to do with the rotaviral infection, we suppose that further study concerning this result is required in the aspects of epidemiology, biology and atmospheric science.

  • PDF

Spatio-temporal Variations in the Dynamics and Export of Large Wood in Korean Mountain Streams (우리나라 산지계류에 있어서 유목 동태의 시.공간적 다양성과 그에 따른 유출 특성)

  • Seo, Jung Il;Chun, Kun Woo;Kim, Suk Woo;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.333-343
    • /
    • 2012
  • In-stream large wood (LW) has a critical impact on the geomorphic characteristics relevant to ecosystem management and disaster prevention, yet relatively little is known about variations in its dynamics and subsequent export on the watershed-scale perspective in Korea. Here we review variations in the dynamics and subsequent export of LW as a function of stream size, which is appropriate for Korean mountain streams. In upstream channels with narrow bankfull widths and low stream discharges, a massive amount of LW, resulting from forest dynamics and hillslope processes, may persist for several decades on valley floor. These pieces, however, are eventually transported during infrequent debris flows from small tributaries, as well as peak hydrology in main-stem channels. During the transport, these pieces suffer fragmentation caused by frictions with boulders, and stream bank and bed. Although infrequent, these events can be dominant processes in the export of significant amounts of LW from upstream channel networks. In downstream channels with wide bankfull widths and high stream discharges, LW is dominantly recruited by forest dynamics and bank erosion only at locations where the channel is adjacent to mature riparian forests. With the LW pieces that are supplied from the upstream, these pieces are continuously transported downstream during rainfall events. This leads to further fragmentation of the LW pieces, which increases their transportability. With decreasing stream-bed slope, these floated LW pieces, however, can be stored and form logjams at various depositional sites, which were developed by interaction between channel forms and floodplains. These pieces may decay for decades and be subsequently transported as particulate or dissolved organic materials, resulting in the limitation of LW fluvial export from the systems. However, in Korea, such depositional sites were developed in the extremely limited streams with a large dimension and no flood history for decades, and thus it does not be expected that the reduction of LW export amount, which can be caused by the long-term storage. Our review presents a generalized view of LW processing and is relevant to ecosystem management and disaster prevention for Korean mountain streams.

Water quality prediction of inflow of the Yongdam Dam basin and its reservoir using SWAT and CE-QUAL-W2 models in series to climate change scenarios (SWAT 및 CE-QUAL-W2 모델을 연계 활용한 기후변화 시나리오에 따른 용담댐 유입수 및 호내 수질 변화 예측)

  • Park, Jongtae;Jang, Yujin;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.10
    • /
    • pp.703-714
    • /
    • 2017
  • This paper analyzes the impact of two climate change scenarios on flow rate and water quality of the Yongdam Dam and its basin using CE-QUAL-W2 and SWAT, respectively. Under RCP 4.5 and RCP 8.5 scenarios by IPCC, simulations were performed for 2016~2095, and the results were rearranged into three separate periods; 2016~2035, 2036~2065 and 2066~2095. Also, the result of each year was divided as dry season (May~Oct) and wet season (Nov~Apr) to account for rainfall effect. For total simulation period, arithmetic average of flow rate and TSS (Total Suspended Solid) and TP (Total Phosphorus) were greater for RCP 4.5 than those of RCP 8.5, whereas TN (Total Nitrogen) showed contrary results. However, when averaged within three periods and rainfall conditions the tendencies were different from each other. As the scenarios went on, the number of rainfall days has decreased and the rainfall intensities have increased. These resulted in waste load discharge from the basin being decreased during the dry period and it being increased in the wet period. The results of SWAT model were used as boundary conditions of CE-QUAL-W2 model to predict water level and water quality changes in the Yongdam Dam. TSS and TP tend to increase during summer periods when rainfalls are higher, while TN shows the opposite pattern due to its weak absorption to particulate materials. Therefore, the climate change impact must be carefully analyzed when temporal and spatial conditions of study area are considered, and water quantity and water quality management alternatives must be case specific.

Water Flow Distribution and Sedimentation Characteristics of Particle Materials in the Sihwa Constructed Wetland (시화호 인공습지의 물흐름 분포 및 입자성물질 퇴적 특성)

  • Choi, Dong-Ho;Choi, Kwang-Soon;Kim, Sea-Won;Oh, Young-Taek;Kim, Dong-Sup;Joh, Seong-Ju;Park, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.425-437
    • /
    • 2007
  • Flow distribution of water and sedimentation rate were investigated to understand the hydrodynamics and settling characteristics of particulate materials in a constructed wetland for treatment of non-point sources pollutants, the Sihwa constructed wetland, Korea. The Sihwa constructed wetland is divided into three sub-wetlands(the Banwol, the Donghwa and the Samhwa wetlands) to treat the polluted water from three streams, the Banwol stream, the Donghwa stream and the Samhwa stream. From the results of water flow experiment using dye(Rhodamine 50WT Red), it was found that the water flow in the wetland was prevailing at the waterway and open water. Dye was spread slowly in the closed water area planted by plants. The mean hydraulic retention time(HRT) at the upper area of high wetland and lower wetland of Banwol, was found to be 34.1 hr at the upper area and 74.6 hr at the lower area respectively, totaling approximately 108.7 hr(4.5 days). The sedimentation rate was higher at lower area(sites of B, C and D) of the wetland than upper area(site of A which is settling zone). Based on the forecast for 20 years as to the amount of sediment that can be deposited in the open water in the future, the sediment depth of each area would be like this: A: 6.3 cm, B: 8.3 cm, C: 7.0 cm, D: 9.5 cm. The contents of organic materials in the sediment deposited within the sediment trap were found to be higher overly in the first investigation period which had much rainfall, and B, C and D areas were found to have an increased COD accumulation than A area. Also, nitrogen and phosphorus were found to increase in the down-stream of the wetland. The results of this study suggest that a sustainable research and management for the characteristics of water flow pattern and sedimentation changeable as time passes is needs to maintain or improve the efficiency of water treatment in the constructed wetland.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

Distributions of Dissolved Pb and Cd in the Surface Water of East Sea, Korea (동해 표층수중 용존 Pb, Cd의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • The distributions of Pb and Cd concentrations in the surface seawater of the East Sea were investigated during the R/V Lavrentyev cruise (July 2009) in which four transects from Russia shore to South were conducted to collect 26 surface water samples. The total dissolved concentrations of Pb and Cd were measured using ICP-MS (Perkin Elmer, DRC-e). In the coastal area, their concentrations of Russia shore (Pb, 0.08; Cd, 0.10 nM) were comparable for Cd but on the other hand, 6 times lower for Pb than Korea shore (Pb, 0.49; Cd, 0.11 nM). In the subregion, their concentrations of Warm region (Pb, 0.22; Cd, 0.01 nM) were about 1.7 times higher for Pb but 0.4 lower for Cd than Cold region (Pb, 0.13; Cd, 0.14 nM). The distributions of Pb and Cd concentrations were divided by lowest level at $10^{\circ}C$ of water temperature. Below $10^{\circ}C$, Pb and Cd concentrations increased when surface water temperatures decreased. Above $10^{\circ}C$, their concentrations increased with temperature, which showed highest concentrations in the Ulleung basin, directly influenced by flux from East Korean Warm Current and neighboring countrys (Korea and Japan). Specially, in the case of Pb, the concentrations decrease remarkablely with temperatures decrease from D10 directly influenced by flux from East Korean Warm Current, which shows highest Pb level. By comparing with other sea areas (Western Mediterranean, East Pacific), Pb concentrations in the East Sea were a little higher. The influence of East Korean Warm Current and neighboring countrys (Korea and Japan) may be relatively important. Therefore, the distribution of Cd may primarily be influenced by mixing of different water masses while the distribution of Pb may mainly be influenced by flux from East Korean Warm Current and atmospheric inputs. River inputs and interaction with particulate materials may also some roles for the distribution of these elements.

Monsoon Inflow as a Major Source of In-lake Phosphorus (호수내 인의 주요원으로 몬순 유입수)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.222-229
    • /
    • 2000
  • Spatial and temporal variation of phosphorus in response to intensity of summer monsoon was evaluated in Taechung Reservoir during 1993${\sim}$1994. Total phosphorus (TP) averaged 31 ${\mu}$g/l during the study and varied from 6 to 197 ${\mu}$g/l. Concentrations of TP were highest in the headwaters during the monsoon of July${\sim}$August 1993, and these values were mainly made of particulate P and were closely associated (R$^{2}$=0.74, p<0.001) with high inorganic suspended solids (NVSS). In-lake TP in the headwaters was mainly influenced by the watershed runoff and declined toward the dam. Values of TP downlake was only one-fifth of the peak in the headwaters and had no correlation with NVSS. In 1994, inlake TP was markedly lower relative to 1993 and showed low spatial and temporal variation. Maximum TP during monsoon 1994 in the headwaters and mid-lake was 72% and 52% lower, respectively, than in those two zones in 1993 whereas TP downlake was similar between the two years. These results suggest that temporal variation downlake is much less influenced by seasonal inflow compared to the haedwaters. In 1993, mean TP before fall overturn, based on average value for all sites, was significantly (t=5.99, p<0.001) greater than the mean after fall overturn, whereas in 1994 mean TP after fall overturn (32 ${\mu}$g/l) was greater. This outcome indicates that in 1993 major P-input originated from the external source from the watershed during the intense monsoon, whereas in 1994 internal processes dominated during the weak monsoon. Overall data suggest that annual budget of inlake P is regulated by intensity of the summer monsoon, and phosphorus data measured at single site near the dam or headwater zone may not be represent seasonal trends of the system due to large spatial variation of Taechung Reservoir.

  • PDF

Evaluation on Cooling Effects of Geothermal Heat Pump System in Farrowing House (지열 냉방시스템을 이용한 분만돈사의 냉방효과 분석)

  • Choi, H.C.;Song, J.I.;Na, J.C.;Kim, M.J.;Bang, H.T.;Kang, H.G.;Park, S.B.;Chae, H.S.;Suh, O.S.;Yoo, Y.S.;Kim, T.W.;Park, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.99-108
    • /
    • 2010
  • The principal objective of this study was to investigate the cooling effects of geothermal heat pump system (GHPS) in farrowing house. A total of 96 sows were allocated to 2 pig housings (GHPS and conventional housing) with 48 for four weeks in summer season. During the experimental period of four weeks, the highest outside temperature observed was approximately $34.1^{\circ}C$, GHPS decrease indoor temperature of pig housing up to $30.9^{\circ}C$, but conventional pig housing was similar to outside temperature. Dust concentrations (maximum 61.4%) of particulate matter less than $10{\mu}m$ (PM 10) in GHPS-housing were lower than the conventional housing. GHPS showed no signigicant difference in carbon dioxide emission, whereas the ammonia gas concentration was significantly decreased in GHPS-housing compared to that of conventional housing. Sows in GHPS-housing showed significantly lower respiratory rate than those of the control group. GHPS did not affect hormone level, litter size and birth weight, but weaning weight of piglets was influenced by GHPS. Feed consumption of sows was significantly increased in GHPS-housing compared to the conventional hosing. These results suggest that GHPS decrease dust concentration, ammonia gas emission and indoor temperature of pig housing and may affect performance in sows and weaned piglets.