• 제목/요약/키워드: particles adhesion and removal

검색결과 22건 처리시간 0.024초

Polyester 직물에의 Hematite 입자의 부착과 제거에 관한 계면 전기적고찰 (제2보) (Interfacial Electrical Studios on Adhesion of Hematite Particles to Polyester Fabric and their Removal from the Fabric(Part 2))

  • 강인숙;김성련
    • 한국의류학회지
    • /
    • 제19권5호
    • /
    • pp.765-773
    • /
    • 1995
  • Effect of interfacial electrical conditions such as, the f potential of PET fiber and u-Fe203 particles, the stability parameter and potential energy of interaction on adhesion of a-Fe903 particles to PET fabric and their removal from the fabric, were investigated as functions of pH, electrolyte and ionic strength. The stability parameter, potential energy of interaction between a-Fe2O3 particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model The adhesion of a-Fe2O3 particles to PET fabric and their removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 particles from the PET fabric were biphasic and were maximum and minimum at pH 7~8, respectively. With high pH and polyanion electrolytes in solution, the adhesion of a-Fe2O3 particles to the PET fabric was low but effects of electrolytes on the removal of a-Fe2O3 particles from the PET fabric was small. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 Particles from the PET fabric were biphasic, and were lowest and highest at the ionic strength 1$\times$10-3, respectively. The adhesion of a-Fe2O3 particles to PET fabric was well related with the interfacial electrical conditions; it was negatively correlated with the f potentials of a-Fe2O3 Particles of its absolute value, the stability parameter and the maximum of total potential energy, while, the adhesion was not related with the t potentials of PET fiber itself. Therefore, the primary factor determining the adhesion of a-Fe203 particles to PET fabric may be the stability of dispersed particles caused by the electrical repulsion of particles. The removal of a-Fe203 particles from PET fabric was not related to such interfacial electrical conditions as the t potentials of PET fiber, the stability parameter and the maximum of total potential energy but removal was related to t potential of a-Fe203 particles.

  • PDF

PET섬유와 $\alpha-Fe_2O_3$ 입자의 표면전하간 상호작용이 고형오구의 세척성에 미치는 영향 (Influence of Interaction of Surface Charges of PET Fiber and $\alpha$-Fe2O3 Particle on Detergency of Particulate Soil)

  • 강인숙
    • 한국의류학회지
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The adhesion and removal of $\alpha$-Fe2O3 particles on the from PET fabric in NPE solution with different ionic strength were discussed in terms of interaction of surface charge of particle and substrate. The adhesion of $\alpha$-Fe2O3 particles to PET fabric and its removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The ζ potential of PET fiber and $\alpha$-Fe2O3 particles in the detergent solution were measured by steaming potential and microelectrophoresis methods, respectively. The adhesion and removal amount of $\alpha$-Fe2O3 particles on the from PET fabric increased with increasing time of adhesion and removal, and the rates of adhesion and removal were high at the initial stage of adhesion and removal, and then the rates decreased with passing time. The adhesion and removal amount of $\alpha$-Fe2O3 particles on and from PET fabric increased with increasing pH of solution regardless ionic strength. The tendencies and degree of adhesion and removal were very similar regardless interaction of surface charge of particle and fiber. Therefore, in the presence of a surfactant and electrolyte, the influence of interaction of surface charge of particle and substrate on the detergency of particulate soil was small.

  • PDF

HDD 내 디스크 표면 특성이 미세입자의 부착 및 이탈에 미치는 영향 (Effect of Characteristics of Disk Surface on Particle Adhesion and Removal in a Hard Disk Drive)

  • 박희성;좌성훈;황정호
    • Tribology and Lubricants
    • /
    • 제16권6호
    • /
    • pp.415-424
    • /
    • 2000
  • The use of magnetoresistive (MR) head requires much tighter control of particle contamination in a drive since loose particles on the disk surface will generate thermal asperities (TA). In this study, a spinoff test was performed to investigate the adhesion and removal capability of a particle to disk surface. Numerical simulation was also performed to investigate dominant factor of particle detachment and to support experimental results. It was shown that particles are detached from the disk surface by the moment derived from the centrifugal force and the drag force and that the centrifugal force and capillary force are the dominant force, which determines spin-off of a particle on the disk surface. Removal of particles smaller than several micrometers, which are the main source of TA generation, is extremely difficult since the adhesion forces exceed the centrifugal force. Lubricant types and manufacturing process also influence the particle removal. Lower bonding ratio and lower viscosity of the lubricant will help to increase the removal rate of the particles from the disk surface.

레이저 유기 충격파를 이용한 웨이퍼 표면 미소입자 제거 (Removal of small particles from silicon wafers using laser-induced shock waves)

  • 이종명;조성호
    • 한국레이저가공학회지
    • /
    • 제5권2호
    • /
    • pp.9-15
    • /
    • 2002
  • Basic principles and unique characteristics of laser-induced shock cleaning have been described compared to a conventional laser cleaning method and the removal of small tungsten particles from silicon wafer surfaces was attempted using both methods. It was found that the conventional laser cleaning was not feasible to remove the tungsten particles whereas a successful removal of the particles was carried out by the laser-induced shock waves. From the quantitative analysis using a surface scanner, the average removal efficiency of the particles was more than 98% where smaller particles were slightly more difficult to remove probably due to the increased adhesion force with a decrease of the particle size. It was also seen that the gap distance between the laser focus and the wafer surface is an important processing parameter since the removal efficiency is strongly dependent on the gap distance.

  • PDF

레이저충격파를 이용한 웨이퍼 세정 (Wafer cleaning efficiency by Laser Shock Wave)

  • 강영재;이상호;박진구;이종명;김태훈
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2003년도 기술심포지움 논문집
    • /
    • pp.256-259
    • /
    • 2003
  • To develop cleaning process various particles should be deposited on wafer surfaces to measure particle removal efficiencies. The purpose of the article in to evaluate, removal efficient)r of silica and alumina particles from wafer surfaces when they are deposited by dry and wet method. Dry deposition in air and wet spray deposition using solutions are used. van der Waals are considered to calculate the adhesion force of particles on surfaces. Higher adhesion force is measured on alumina particles on silicon when particles are deposited in air.

  • PDF

고형오구 입자크기가 고형오구의 세척성에 미치는 영향 (The Effect of Particle Size on the Detergency of Particulate Soil)

  • 문미화;강인숙
    • 한국의류학회지
    • /
    • 제34권4호
    • /
    • pp.653-662
    • /
    • 2010
  • This study investigates the effect of particle size on the detergency of particulate soil using an $\alpha-Fe_2O_3$ particle as the model. Monodispersed spherical $\alpha-Fe_2O_3$ particles were prepared by the hydrothermal aging of an acidic $FeCl_3$ and HCl solution. The $\xi$-potential of PET fiber was measured by the streaming potential method. The potential energy of interaction between the particle and fiber was calculated using the heterocoagulation theory for a sphere-plate model. The $\xi$-potential of PET fiber and potential energy of interaction between particles and fiber increased with a decreasing particle size in a DBS solution. However, in the nonionic surfactant solution, the $\xi$-potential signs of PET fiber and $\alpha-Fe_2O_3$ particles were (-) and (+), respectively; there was no repulsive power between the particles and substrate. The adhesion of particles to the fabric increased with increasing particle size in the anionic surfactant solution and their removal from the fabric increased with a decreasing particle size. The adhesion of particles to the fabric and their removal from the fabric was biphasic with a maximum and minimum at 0.1% concentration of the surfactant solution. In the nonionic surfactant solution the adhesion of particles to fabric and their removal from the fabric were greater than the ones in the anionic surfactant DBS solution.

극저온 $CO_2$ 세정과정 시 미세오염물의 탈착 메커니즘 연구 (A dynamic analysis on minute particles' detachment mechanism in a cryogenic $CO_2$ cleaning process)

  • 석종원;이성훈;김필기;이주홍
    • 반도체디스플레이기술학회지
    • /
    • 제7권4호
    • /
    • pp.29-33
    • /
    • 2008
  • Rapid increase of integrity for recent semiconductor industry highly demands the development of removal technology of contaminated particles in the scale of a few microns or even smaller. It is known that the surface cleaning technology using $CO_2$ snow has its own merits of high efficiency. However, the detailed removal mechanism of particles using this technology is not yet fully understood due to the lack of sophisticated research endeavors. The detachment mechanism of particles from the substrates is known to be belonged in four types; rebounding, sliding, rolling and lifting. In this study, a modeling effort is performed to explain the detachment mechanism of a contaminant particle due to the rebounding caused by the vertical collision of the $CO_2$ snow. The Hertz and Johnson-Kendall-Roberts(JKR) theories are employed to describe the contact, adhesion and deformation mechanisms of the particles on a substrate. Numerical simulations are followed for several representative cases, which provide the perspective views on the dynamic characteristics of the particles as functions of the material properties and the initial inter-particle collision velocity.

  • PDF

오염입자의 부착상태가 시각적인 세정효과에 미치는 영향 (State of Stain Particle's ADhesion and Its Influence on Visual Consequence of Soil-Removal)

  • 신영선
    • 대한가정학회지
    • /
    • 제20권2호
    • /
    • pp.45-51
    • /
    • 1982
  • Degree of separation and adhesion of dye and stain particles has been measured usually by the rate of reflection of light. However, it could be proved that the relation between the quantity of stain and the rate of reflection greatly varied with kinds of stain and states of adhesion. For this study, several pieces of cotton and polyester having different states of stain adhesion were prepared by staining them with two kinds of artificial stain different in color: Ferric Oxide and Ferric Oxynate. Every piece went through soilremoval test which employed two surfactants: Anionic LAS and Cationic M2-100. After the operation, relations between quantity of pre-soilremoval stain and rate of reflection were measured, as well as those between quantity of post-soilremoval stain and rate of reflection. Rate of reflection and quantity of stain were not proportional in measurement to the pieces stained with Ferric Oxide and Ferric Oxynate. The consequence was also the same with cotton and polyester. That held true of the fat-stained textile. With the same quantity of stain, rate of reflection varied according to the magnitude of stain particles, and the state of adhesion influenced the magnitude of stain particles a great deal.

  • PDF

친수 및 소수처리 PET직물의 고형오구의 세척성 (Detergency of Particulate Soil of PET Fabric Finished with Hydrophilic and Hydrophobic Chemicals)

  • 강인숙
    • 한국의류학회지
    • /
    • 제36권11호
    • /
    • pp.1237-1245
    • /
    • 2012
  • The effect of hydrophilicity and hydrophobicity of PET fabric on the detergency of particulate soil were investigated as functions of the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. The detergency of the particulate soil was determined by the adhesion of particles to and their removal from fabric, the PET fabric and ${\alpha}-Fe_2O_3$ were used as textile materials and for the model of particulate soil, respectively. The hydrophilic and hydrophobic finish for PET fabric was treated with a polyester, silicone and fluorine organic compound of resin respectively. The adhesion of particulate soil to fabric treated with hydrophobic chemicals were slightly higher but its removal from fabric treated with hydrophobic chemicals was largely higher than fabric treated with a hydrophilic chemical regardless of solution conditions such as the concentration of hydrophilic and hydrophobic chemicals, surfactant concentration, ionic strength, adhesion and removal time, and pH. Therefore, hydrophobic treatment for fabric had a more positive effect than the hydrophilic treatment on the detergency of particulate soil.

극저온 $CO_2$ 세정공정을 위한 거친표면 위 미세입자의 점착특성 연구 (A Study of Minute Particles' Adhesion on a Rough Surface for a Cryogenic $CO_2$ Cleaning Process)

  • 석종원;이성훈;김필기
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.5-10
    • /
    • 2010
  • Among a variety of cleaning processes, the cryogenic carbon dioxide ($CO_2$) cleaning has merits because it is highly efficient in removing very fine particles, innoxious to humans and does not produce residuals after the cleaning, which enables us to extend its area of coverage in the semi-conductor fabrication society. However, the cryogenic carbon dioxide cleaning method has some technical research issues in aspect to particles' adhesion and removal. To resolve these issues, performing an analysis for the identification of particle adhesion mechanism is needed. In this study, a research was performed by a theoretical approach. To this end, we extended the G-T (Greenwood-Tripp) model by applying the JKR (Johnson-Kendall-Roberts) and Lennard-Jones potential theories and the statistical characteristics of rough surface to investigate and identify the contact, adhesion and deformation mechanisms of soft or hard particles on the rough substrate. The statistical characteristics of the rough surface were taken into account through the employment of the normal probability distribution function of the asperity peaks on the substrate surface. The effects of surface roughness on the pull-off force for these particles were examined and discussed.