• Title/Summary/Keyword: particle window

Search Result 51, Processing Time 0.023 seconds

Characterization of Particle Size Distribution of Infiltrated Secondhand Smoke through the Gap in a Single Glazed and a Secondary Glazed Window by Indoor and Outdoor Pressure Differences (실내외 압력 차에 따른 단창과 이중창의 틈새로 침투된 간접흡연의 입자 크기 분포 특성)

  • Kim, Jeonghoon;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.360-369
    • /
    • 2018
  • Objectives: Outdoor tobacco smoke can penetrate into the indoor environment through cracks in the building envelope. This study aimed to characterize the particle size distribution of infiltrated secondhand smoke (SHS) through the gap in a single glazed and a secondary glazed window according to pressure differences in a chamber. Methods: Two polyvinyl chloride sliding windows were evaluated for infiltration, one with a glazed window and the other with a secondary glazed window. Each window was mounted and sealed in a polycarbonate chamber. The air in the chamber was discharged to the outside to establish pressure differences in the chamber (${\Delta}P$). Outdoor smoking sources were simulated at a one-meter distance from the window side of the chamber. The particle size distribution of the infiltrated SHS was measured in the chamber using a portable aerosol spectrometer. The particle size distribution of SHS inside the chamber was normalized by the outdoor peak for fine particles. Results: The particle size distribution of SHS inside the chamber was similar regardless of window type and ${\Delta}P$. It peaked at $0.2-0.3{\mu}m$. Increases in particulate matter (PM) concentrations from SHS infiltration were higher with the glazed window than with the secondary glazed window. PM concentrations of less than $1{\mu}m$ increased as ${\Delta}P$ was increased inside the chamber. Conclusions: The majority of infiltrated SHS particles through window gap was $0.2-0.3{\mu}m$ in size. Outdoor SHS particles infiltrated more with a glazed window than with a secondary glazed window. Particle sizes of less than $1{\mu}m$ were associated with ${\Delta}P$. These findings can be a reference for further research on the measurement of infiltrated SHS in buildings.

Characterization of Photoelectron Behavior of Working Electrodes with the Titanium Dioxide Window Layer in Dye-sensitized Solar Cells

  • Gong, Jaeseok;Choi, Yoonsoo;Lim, Yeongjin;Choi, Hyonkwang;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.1-346.1
    • /
    • 2014
  • Porous nano crystalline $TiO_2$ is currently used as a working electrode in a dye-sensitized solar cell (DSSC). The conventional working electrode is comprised of absorption layer (particle size:~20 nm) and scattering layer (particle size:~300 nm). We inserted window layer with 10 nm particle size in order to increase transmittance and specific surface area of $TiO_2$. The electrochemical impedance spectroscope analysis was conducted to analysis characterization of the electronic behavior. The Bode phase plot and Nyquist plot were interpreted to confirm the internal resistance caused by the insertion of window layer and carrier lifetime. The photocurrent that occurred in working electrode, which is caused by rise in specific surface area, increased. Accordingly, it was found that insertion of window layer in the working electrode lead to not only effectively transmitting the light, but also increasing of specific surface area. Therefore, it was concluded that insertion of window layer contributes to high conversion efficiency of DSSCs.

  • PDF

조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가

  • Kim, Byeong-Jae;Seong, Hyeong-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.25-35
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for window deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range $1.1{\leq}d_p\leq10.0$ pixel were investigated. Three particle diameters were selected for detailed evaluation: $d_p$=2.2, 3.3, 4.4 pixel with a constant particle concentration 0.02 $particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

Assessment of Interpolation Schemes in the Window Deformation PIV (조사구간 윈도우 변형을 이용한 PIV에서 보간법 평가)

  • Kim, Byoung-Jae;Sung, Hyung-Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.59-68
    • /
    • 2006
  • We have evaluated the performances of the following six interpolation schemes used for win-dow deformation in particle image velocimetry (PIV): the linear, quadratic, B-spline, cubic, sinc, Lagrange interpolations. Artificially generated images comprised of particles of diameter in a range pixel were investigated. Three particle diameters were selected for detailed evaluation: pixel with a constant particle concentration $0.02particle/pixel^2$. Two flow patterns were considered: uniform and shear flows. The mean and random errors, and the computation times of the interpolation schemes were determined and compared.

  • PDF

Robust Localization Algorithm for Mobile Robots in a Dynamic Environment with an Incomplete Map (동적 환경에서 불완전한 지도를 이용한 이동로봇의 강인한 위치인식 알고리즘의 개발)

  • Lee, Jung-Suk;Chung, Wan Kyun;Nam, Sang Yep
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.109-118
    • /
    • 2008
  • We present a robust localization algorithm using particle filter for mobile robots in a dynamic environment. It is difficult to describe moving obstacles like people or other robots on the map and the environment is changed after mapping. A mobile robot cannot estimate its pose robustly with this incomplete map because sensor observations are corrupted by un-modeled obstacles. The proposed algorithms provide robustness in such a dynamic environment by suppressing the effect of corrupted sensor observations with a selective update or a sampling from non-corrupted window. A selective update method makes some particles keep track of the robot, not affected by the corrupted observation. In a sampling from non-corrupted window method, particles are always sampled from several particle sets which use only non-corrupted observation. The robustness of proposed algorithm is validated with experiments and simulations.

  • PDF

Implementation and benchmarking of the local weight window generation function for OpenMC

  • Hu, Yuan;Yan, Sha;Qiu, Yuefeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3803-3810
    • /
    • 2022
  • OpenMC is a community-driven open-source Monte Carlo neutron and photon transport simulation code. The Weight Window Mesh (WWM) function and an automatic Global Variance Reduction (GVR) method was recently developed and implemented in a developmental branch of OpenMC. This WWM function and GVR method broaden OpenMC's usage in general purposes deep penetration shielding calculations. However, the Local Variance Reduction (LVR) method, which suits the source-detector problem, is still missing in OpenMC. In this work, the Weight Window Generator (WWG) function has been developed and benchmarked for the same branch. This WWG function allows OpenMC to generate the WWM for the source-detector problem on its own. Single-material cases with varying shielding and sources were used to benchmark the WWG function and investigate how to set up the particle histories utilized in WWG-run and WWM-run. Results show that there is a maximum improvement of WWM generated by WWG. Based on the above results, instructions on determining the particle histories utilized in WWG-run and WWM-run for optimal computation efficiency are given and tested with a few multi-material cases. These benchmarks demonstrate the ability of the OpenMC WWG function and the above instructions for the source-detector problem. This developmental branch will be released and merged into the main distribution in the future.

Characterization of Dielectrophoretic Force for the Structural Shapes of Window in Microfluidic Dielectrophoretic Chip (미세유체칩내 electrode의 opening window형태에 따른 유전전기영동력 특성 규명)

  • Lee, Jaewoo;Kwak, Tae Joon;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • Dielectrophoresis(DEP) is useful in manipulation and separation of micro-sized particles including biological samples such as bacteria, blood cells, and cancer cells in a micro-fluidic device. Especially, those separation and manipulation techniques using DEP in combination of micro fabrication technique have been researched more and more. Recently, it is revealed that a window structure of insulating layer in microfluidic DEP chip is key role in trap of micro-particles around the window structure. However, the trap phenomenon-driven by DEP force gradient did not fully understand and is still illusive. In this study, we characterize the trap mechanism and efficiency with different shapes of window in a microfluidic DEP chip. To do this characterization, we fabricated 4 different windows shapes such as rhombus, circle, squares, and hexagon inside a micro-fluidic chip, and performed micro-sized particles manipulation experiments as varying the frequency and voltage of AC signal. Moreover, the numerical simulation with the same parameters that were used in the experiment was also performed in order to compare the simulation results and the experimental results. Those comparison shows that both results are closely matched. This study may be helpful in design and development of microfluidic DEP chip for trapping micro-scaled biological particle.

Infiltration Characteristics of Particulate Matter at a Korean Apartment House (국내 아파트의 미세먼지 유입 특성)

  • Joo, SangWoo;Ji, JunHo
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.149-157
    • /
    • 2019
  • Infiltration characteristics of airborne particulate matter had been investigated in real-life for about 90 days over 2 years in a Korean apartment building where a 3-person household had lived and the exclusive private area was 84.9 ㎡. Airtightness was measured by fan depressurization, and the ACH50 was 2.41 times per hour. In and outdoor particle concentrations were measured by optical particle counters. Infiltration factors and filtration efficiencies of the house, which reflect the removal of outdoor particles penetrating building envelope and the deposition inside a building, were obtained from data screened based on an empirical evaluation process. Infiltration factor of fine particles showed a range from about 42% at 0.4 m/s of wind speed to 72% at 4.2 m/s of wind speed with closed windows and doors. Filtration efficiency was like a MERV 13 grade filter with an open window outside at a balcony at low outdoor wind speed under 1 m/s. The grade decreased to MERV 11 by opening another outside window at the other balcony. Filtration efficiencies decreased as much as 29% in average at a range of 0.3~2.5 ㎛.

Analysis of Heterogeneous $CaCO_{3}-CaSO_{4}$ Single Particle using Ultra-thin Window EPMA (Ultra-thin Window EPMA를 이용한 $CaCO_{3}-CaSO_{4}$ 혼성의 단일 입자 분석)

  • ;;R. Van Grieken
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.87-90
    • /
    • 2000
  • 대기 중에 존재하는 화합물의 반응을 연구하는 것은 대기 오염 화합물의 이동이나 소멸, 환경에의 영향을 파악하기 위하여 긴요하다. 특히 입자상 물질과 기체상 화합물과의 반응을 명확히 이해하는 것은 대기 오염물질의 거동을 파악하는데 매우 중요하다. 입자상 물질을 분석하는 방법 중에 EPMA(Electron Probe X-ray Microanalysis)를 이용한 단일 입자 분석법(Single Particle Analysis)은 개개 입자의 형상과 크기 그리고 화학 조성에 대한 정보를 동시에 제공하기 때문에 개개 입자의 생성, 이동, 반응성, 소멸 그리고 환경에의 영향에 대한 자세한 정보를 얻을 수 있다. (중략)

  • PDF

Error analysis criteria and application to window functions in acoustical holography (음향 홀로그래피 오차 해석 기준과 창 함수에의 적용)

  • 황의석
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.111-114
    • /
    • 1998
  • Acoustical holography is one of the powerful methods in sound radiation problems. Just measuring hologram data on a plane, one can calculate whole space physical quantities such as pressure, particle velocity, and sound intensity. However, the use of finite and discrete operations introduce significant errors inevitably. This paper reviews error reduction schemes, and introduces error analysis criteria derived from modal analysis. Finally the effect of window functions is investigated by these criteria.

  • PDF