• Title/Summary/Keyword: particle weight fraction

Search Result 42, Processing Time 0.034 seconds

Effects of Operating Variables on Solid Separation Rate in Two-interconnected Fluidized Beds System for Selective Solid Circulation (선택적 고체순환을 위한 2탑 유동층 시스템에서 고체분리속도에 미치는 조업변수들의 영향)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Bae, Dal-Hee;Kim, Hong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.355-361
    • /
    • 2009
  • Effects of operating variables on solid separation rate in two-interconnected fluidized beds system for selective solid circulation have been investigated. Coarse(212~300 or $425{\sim}600{\mu}m$) and fine($63{\sim}106{\mu}m$) particles were separated using the solid separator and the solid separation rate was ranged from 66 to 987 g/min. The solid separation rate increased as the gas velocity through the solid injection nozzle, solid height, diameter of solid injection nozzle, particle size of coarse particles, aperture of the solid separator, and weight fraction of fines in the solid mixture increased. However, the effect of the fluidization velocity was negligible.

Microstructure characterization and mechanical properties of Cr-Ni/ZrO2 nanocomposites

  • Sevinc, O zlem;Diler, Ege A.
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.313-323
    • /
    • 2022
  • The microstructure and mechanical properties of Cr-Ni steel and Cr-Ni steel-matrix nanocomposites reinforced with nano-ZrO2 particles were investigated in this study. Cr-Ni steel and Cr-Ni/ZrO2 nanocomposites were produced using a combination of high-energy ball milling, pressing, and sintering processes. The microstructures of the specimens were analyzed using EDX and XRD. Compression and hardness tests were performed to determine the mechanical properties of the specimens. Nano-ZrO2 particles were effective in preventing chrome carbide precipitate at the grain boundaries. While t-ZrO2 was detected in Cr-Ni/ZrO2 nanocomposites, m-ZrO2 could not be found. Few α'-martensite and deformation bands were formed in the microstructures of Cr-Ni/ZrO2 nanocomposites. Although nano-ZrO2 particles had a negligible impact on the strength improvement provided by deformation-induced plasticity mechanisms in Cr-Ni/ZrO2 nanocomposites, the mechanical properties of Cr-Ni steel were significantly improved by using nano-ZrO2 particles. The hardness and compressive strength of Cr-Ni/ZrO2 nanocomposite were higher than those of Cr-Ni steel and enhanced as the weight fraction of nano-ZrO2 particles increased. Cr-Ni/ZrO2 nanocomposite with 5wt.% nano-ZrO2 particles had almost twofold the hardness and compressive strength of Cr-Ni steel. The nano-ZrO2 particles were considerably more effective on particle-strengthening mechanisms than deformation-induced strengthening mechanisms in Cr-Ni/ZrO2 nanocomposites.

Preparation of 40 wt.% Ag-coated Cu Particles with Thick Ag Shells and Suppression of Defects in the Particles (두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • To prepare the Cu-based filler material indicating enhanced oxidation resistance property and Ag content, Ag-coated Cu particles was fabricated by Ag plating of 40 wt % on the spherical Cu particles with an average size of $2{\mu}m$ and their oxidation behavior was also evaluated. In the case that ethylenediaminetetraacetic acid was used alone, the fabricated particles frequently showed broken structures such as delamination at Ag shell/core Cu interface and hollow structure that are induced by excessive galvanic displacement reaction. As a result, fraction of defect particles increased up to 19.88% after the Ag plating of 40 wt.%. However, the fraction in the 40 wt.% Ag-coated Cu particles decreased to 9.01% and relatively smooth surface and dense microstructure in the Ag shell were also observed with additional usage of hydroquinone as a complexing agent. Ag-coated Cu particles having the enhanced microstructure did not show any weight increase by oxidation for exposure to air at $160^{\circ}C$ for 2 h, indicating increased oxidation resistance property.

Preparation and Characterization of Polymer Coated BaTiO3 and Polyimide Nanocomposite Films (고분자로 표면 코팅된 BaTiO3와 이를 이용한 폴리이미드 나노복합필름의 제조 및 특성)

  • Han, Seung San;Han, Ji Yun;Choi, Kil-Yeong;Im, Seung Soon;Kim, Yong Seok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.527-531
    • /
    • 2006
  • We have prepared organophilic inorganic particles and polyimide (PI) nanocomposite having excellent thermal stability and high dielectric constant that can be used for electronic application such as capacitor. We have chosen barium titanate (BT), a high dielectric constantmaterial and its surface was coated with nylon 6 to improve the affinity with PI. The FT-IR and TEM studies showed that the organophilic inorganic particle (BTN) has a polymer shell with thickness of 5 nm. We have suggested that it is possible to control the thickness of coating surface and also indicated the relationship between the ratio of inside and outside radius of BTN and the weight fraction of BT. The PI nanocomposite films based on poly(amic acid) and BTN were prepared by cyclodehydration reaction. The homogeneous dispersion of BTN in PI matrix was identified by using SEM. We have investigated the effect of BTN content on the coefficient of thermal stability, integral procedural decomposition temperature (IPDT), and dielectric constant of PI nanocomposite films.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Mineralogical and Physico-chemical Properties of Fine fractions Remained after Crushed Sand Manufacture (국내 화강암류를 이용한 일부 인공쇄석사 제조과정에서 생기는 스러지의 광물.물리화학적 특성)

  • Yoo, Jang-Han;Ahn, Gi-Oh;Jang, Jun-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.355-361
    • /
    • 2006
  • Artificially crushed sands occupy approximately 30 percent of the total consumption in South Korea. The demand for the crushed sands is expected to rise in the future. Most manufacturers use granitic rocks to produce the crushed sands. During the manufacturing process, fine fractions (i.e., sludges or particles smaller than 63 microns) are removed through the process of flocculation. The fine fraction occupies about 15% of the total weight. The sludges are comprised of quartz, feldspars, calcite, and various kinds of clay minerals. Non-clay minerals occupy more than 75 percent of the sluges weight, according to the XRD semi-quantification measurement. Micas, kaolinites, chlorite, vermiculite, and smectites occur as minor constituents. The sludges from Jurassic granites contain more kaolinites and $14{\AA}$-types than those from the Cretaceous ones. The chemical analysis clearly shows the difference between the parent rocks and the sludges in chemical compositions. Much of colored components in the sludges was accumulated as the weathering products. Particle size analysis results show that the sludges can be categorized as silt loam in a sand-silt-clay triangular diagram. This result was for her confirmed by the hydraulic conductivity data. In South Korea, the sludges remained after crushed sand production are classified as an industrial waste because of their impermeability, and which is caused by their high silt and clay fractions.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.

Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization (비수계 분산중합으로 제조된 환경친화성 아크릴수지/나노클레이 복합재료의 특성 연구)

  • Kim, Yeongho;Lee, Minho;Jeon, Hyeonyeol;Lee, Young Chul;Min, Byong Hun;Kim, Jeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.120-126
    • /
    • 2016
  • Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

Effects of Inhalable Microparticles of Socheongryong-tang on Chronic Obstructive Pulmonary Disease in a Mouse Model (COPD 동물 모델에서 소청룡탕 흡입제형의 효과)

  • Lee, Eung-Seok;Han, Jong-Min;Kim, Min-Hee;Namgung, Uk;Yeo, Yoon;Park, Yang-Chun
    • The Journal of Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.54-68
    • /
    • 2013
  • Objectives: This study aimed to evaluate the effects of microparticles of Socheongryong-tang (SCRT) on chronic obstructive pulmonary disease (COPD) in a mouse model. Methods: The inhalable microparticles containing SCRT were produced by spray-drying with leucine as an excipient, and evaluated with respect to the aerodynamic properties of the powder by Andersen cascade impactor (ACI). Its equivalence to SCRT extract was evaluated using lipopolysaccharide (LPS) and a cigarette-smoking (CS)-induced murine COPD model. Results: SCRT microparticles provided desirable aerodynamic properties (fine particle fraction of $49.6{\pm}5.5%$ and mass median aerodynamic diameter of $4.8{\pm}0.3{\mu}m$). SCRT microparticles did not show mortality or clinical signs over 14 days. Also there were no significant differences in body weight, organ weights or serum chemical parameters between SCRT microparticle-treated and non-treated groups. After 14 days the platelet count significantly increased compared with the non-treated group, but the values were within the normal range. Inhalation of SCRT microparticles decreased the rate of neutrophils in blood, granulocytes in peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage fluid (BALF) and level of TNF-${\alpha}$ and IL-6 in BALF on COPD mouse model induced by LPS plus CS. This effect was verified by histological findings including immunofluorescence staining of elastin, collagen, and caspase 3 protein in lung tissue. Conclusions: These data demonstrate that SCRT microparticles are equivalent to SCRT extract in pharmaceutical properties for COPD. This study suggests that SCRT microparticles would be a potential agent of inhalation therapy for the treatment of COPD.