DOI QR코드

DOI QR Code

Preparation of 40 wt.% Ag-coated Cu Particles with Thick Ag Shells and Suppression of Defects in the Particles

두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제

  • Choi, Eun Byeol (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering Seoul National University of Science & Technology)
  • 최은별 (서울과학기술대학교 의공학-바이오소재 융합협동과정 신소재공학 프로그램) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2017.12.18
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

To prepare the Cu-based filler material indicating enhanced oxidation resistance property and Ag content, Ag-coated Cu particles was fabricated by Ag plating of 40 wt % on the spherical Cu particles with an average size of $2{\mu}m$ and their oxidation behavior was also evaluated. In the case that ethylenediaminetetraacetic acid was used alone, the fabricated particles frequently showed broken structures such as delamination at Ag shell/core Cu interface and hollow structure that are induced by excessive galvanic displacement reaction. As a result, fraction of defect particles increased up to 19.88% after the Ag plating of 40 wt.%. However, the fraction in the 40 wt.% Ag-coated Cu particles decreased to 9.01% and relatively smooth surface and dense microstructure in the Ag shell were also observed with additional usage of hydroquinone as a complexing agent. Ag-coated Cu particles having the enhanced microstructure did not show any weight increase by oxidation for exposure to air at $160^{\circ}C$ for 2 h, indicating increased oxidation resistance property.

내산화성 및 Ag 함량을 증가시킨 Cu계 필러 소재를 제조하고자 평균 직경 $2{\mu}m$의 구형 Cu 입자에 약 40 wt.% 수준으로 Ag를 코팅한 Ag 코팅 Cu 입자를 제조하여 그 내산화 거동을 분석하였다. Ethylenediaminetetraacetic acid 착화제만을 첨가하여 제조된 Ag 코팅 Cu 입자는 Ag 이온들과 Cu 원자들간의 과도한 갈바닉 치환 반응에 의한 Ag shell/Cu core 계면의 분리 및 입자 내부가 비어있는 결함 입자들이 종종 생성되어 Ag 코팅 Cu 입자의 형상이 무너지는 문제점들이 관찰되었다. 그 결과 40 wt.%의 Ag 코팅 후 결함 입자들의 총 분율은 19.88%까지 증가하였다. 그러나 hydroquinone 환원제를 추가적으로 첨가하여 40 wt.% Ag를 코팅시킨 Cu 입자들의 경우 결함 생성률이 9.01%까지 감소하였고, 표면이 매끄럽고 상대적으로 치밀한 Ag shell이 형성되면서 $160^{\circ}C$의 대기 중에서 2시간동안 노출 시에도 산화에 의한 무게 증가가 관찰되지 않아 향상된 내산화 특성을 나타내었다.

Keywords

References

  1. V. Brusic, G. S. Frankel, J. Roldan, and R. Saraf, "Corrosion and Protection of a Conductive Silver Paste", J. Electrochem. Soc., 142(8), 2591 (1995). https://doi.org/10.1149/1.2050058
  2. J. S. Park, J. H. Hwang, J. G. Kim, Y. H. Kim, H. D. Park, and S. K. Kang, "Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes", Kor. J. Mater. Res., 13(1), 18 (2003). https://doi.org/10.3740/MRSK.2003.13.1.018
  3. D. Lu, Q. K. Tong, and C. P. Wong, "Conductivity Mechanisms of Isotropic Conductive Adhesives (ICAs)", Proc. International Symposium on Advanced Packaging Materials, 2, IEEE (1999).
  4. L. Ye, Z. Lai, J. Liu, and A. Tholen, "Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives", IEEE Trans. Electron. Packag. Manuf., 22(4), 299 (1999). https://doi.org/10.1109/6104.816098
  5. D. Lu, Q. K. Tong, and C. P. Wong, "A Study of Lubricants on Silver Flakes for Microelectronics Conductive Adhesives", IEEE Trans. Compon. Packag. Technol., 22(3), 365 (1999). https://doi.org/10.1109/6144.796536
  6. H. Jiang, K. Moon, Y. Li, and C. P. Wong, "Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites", 18(13), 2969 (2006). https://doi.org/10.1021/cm0527773
  7. X. Xu, X. Luo, H. Zhuang, W. Li, and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance", Mater. Lett., 57(24-25), 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  8. H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung, and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Surf. Coat. Technol., 201(6), 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  9. R. Zhang, W. Lin, K. Lawrence, and C. P. Wong, "Highly Reliable, Low Cost, Isotropically Conductive Adhesives Filled with Ag-coated Cu Flakes for Electronic Packaging Applications", Int. J. Adh. Adh., 30(6), 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  10. D. S. Jung, H. M. Lee, Y. C. Kang, and S. B. Park, "Air-stable Silver-coated Copper Particles of Sub-micrometer Size', J. Colloid Interface Sci., 364(2), 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  11. J. Zhao, D. M. Zhang, and J. Zhao, "Fabrication of Cu-Ag Core-shell Bimetallic Superfine Powders by Eco-friendly Reagents and Structures Characterization", J. Solid State Chem., 184(9), 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  12. J. H. Kim, and J.-H. Lee, "Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-coated Cu Flakes", Kor. J. Mater. Res., 24(11), 617 (2014). https://doi.org/10.3740/MRSK.2014.24.11.617
  13. G. Kim, K.-M. Jung, J.-T. Moon, and J.-H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014). https://doi.org/10.6117/kmeps.2014.21.4.051
  14. J. H. Kim, and J.-H. Lee, "A Method for Application of Ammonium-based Pretreatment Solution in Preparation of Copper Flakes Coated by Electroless Ag Plating", J. Microelectron. Packag. Soc., 22(4), 57 (2015). https://doi.org/10.6117/KMEPS.2015.22.4.057
  15. S. J. Oh, J. H. Kim and J.-H. Lee, "Effects of Different Pretreatment Methods and Amounts of Reductant on Preparation of Silver-Coated Copper Flakes Using Electroless Plating", J. Microelectron. Packag. Soc., 23(2), 97 (2016). https://doi.org/10.6117/kmeps.2016.23.2.097
  16. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C.-H. Lee, and B.-S. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electrical Conductivity", Appl. Surf. Sci., 263(15), 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  17. H. T. Hai, H. Takamura, and J. Koike, "Oxidation Behavior of Cu-Ag Core-Shell Particles for Solar Cell Applications", J. Alloys Comp., 564, 71 (2013). https://doi.org/10.1016/j.jallcom.2013.02.048
  18. J. Shin, H. Kim, K. H. Song, and J. Chae, "Synthesis of Silver-coated Copper Particles with Thermal Oxidation Stability for a Solar Cell Conductive Paste:, Chem. Lett., 44(9), 1223 (2015). https://doi.org/10.1246/cl.150424
  19. J.-K. Lee, S.-H. Park, and G.-S. Yang, "Effect of Sintering Aid and Glass-Frit on the Densification and Resistivity of Silver Paste", Kor. J. Mater. Res.18(5), 283 (2008) https://doi.org/10.3740/MRSK.2008.18.5.283
  20. J.-J. Zhu, Q.-F. Qiu, H. Wang, J.-R. Zhang, J.-M. Zhu, and Z.-Q. Chen, "Synthesis of Silver Nanowires by a Sonoelectrochemical Method", Inorg. Chem. Commun., 5, 242 (2002). https://doi.org/10.1016/S1387-7003(02)00351-9
  21. L. Liu, X. Xu, Y. Ye, Y. Ma, Y. Liu, J. Lei, and N. Yin, "Electrolysis Synthetic Silver Nanoparticles Enhanced Light Emission from CdSe Quantum Dots", Thin Solid Films, 526, 127 (2012). https://doi.org/10.1016/j.tsf.2012.10.123
  22. C. Chang, Z. Lei, Y. Li, and Z. Wang, "Electrochemical Research of a Stable Electroless Silver Bath", J. Electrochem. Soc., 163(3), D121 (2016). https://doi.org/10.1149/2.1101603jes
  23. M. Grouchko, A. Kamyshny, and S. Magdassi, "Formation of Air-stable Copper-Silver Core-Shell Nanoparticles for Inkjet Printing", J. Mater. Chem., 117, 3057 (2009).
  24. A. Muzikansky, P. Nanikashvili, J. Grinblat, and D. Zitoun, "Ag Dewetting in Cu@Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C, 117, 3093 (2013).
  25. J. H. Kim, and J.-H. Lee, "Microstructural Investigation of the Oxidation Behavior of Cu in Ag-coated Cu Films Using a Focused Ion Beam Transmission Electron Microscopy Technique", Jap. J. Appl. Phys., 55(653), 06JG01 (2016). https://doi.org/10.7567/JJAP.55.06JG01