Browse > Article
http://dx.doi.org/10.13048/jkm.13012

Effects of Inhalable Microparticles of Socheongryong-tang on Chronic Obstructive Pulmonary Disease in a Mouse Model  

Lee, Eung-Seok (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University)
Han, Jong-Min (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University)
Kim, Min-Hee (Dept. of Neurophysiology, College of Oriental Medicine, Daejeon University)
Namgung, Uk (Dept. of Neurophysiology, College of Oriental Medicine, Daejeon University)
Yeo, Yoon (College of Pharmacy, Purdue University)
Park, Yang-Chun (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University)
Publication Information
The Journal of Korean Medicine / v.34, no.3, 2013 , pp. 54-68 More about this Journal
Abstract
Objectives: This study aimed to evaluate the effects of microparticles of Socheongryong-tang (SCRT) on chronic obstructive pulmonary disease (COPD) in a mouse model. Methods: The inhalable microparticles containing SCRT were produced by spray-drying with leucine as an excipient, and evaluated with respect to the aerodynamic properties of the powder by Andersen cascade impactor (ACI). Its equivalence to SCRT extract was evaluated using lipopolysaccharide (LPS) and a cigarette-smoking (CS)-induced murine COPD model. Results: SCRT microparticles provided desirable aerodynamic properties (fine particle fraction of $49.6{\pm}5.5%$ and mass median aerodynamic diameter of $4.8{\pm}0.3{\mu}m$). SCRT microparticles did not show mortality or clinical signs over 14 days. Also there were no significant differences in body weight, organ weights or serum chemical parameters between SCRT microparticle-treated and non-treated groups. After 14 days the platelet count significantly increased compared with the non-treated group, but the values were within the normal range. Inhalation of SCRT microparticles decreased the rate of neutrophils in blood, granulocytes in peripheral blood mononuclear cells (PBMC) and bronchoalveolar lavage fluid (BALF) and level of TNF-${\alpha}$ and IL-6 in BALF on COPD mouse model induced by LPS plus CS. This effect was verified by histological findings including immunofluorescence staining of elastin, collagen, and caspase 3 protein in lung tissue. Conclusions: These data demonstrate that SCRT microparticles are equivalent to SCRT extract in pharmaceutical properties for COPD. This study suggests that SCRT microparticles would be a potential agent of inhalation therapy for the treatment of COPD.
Keywords
Socheongryong-tang; inhalable microparticles; chronic obstructive pulmonary disease; spray drying; cigarette smoking;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care. 2005;50(10):1313-21.
2 Borgstrom L. On the use of dry powder inhalers in situations perceived as constrained. J Aerosol Med. 2001;14(3):281-7.   DOI
3 Yang Y, Tsifansky MD, Shin S, Lin Q, Yeo Y. Mannitol-guided delivery of Ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol Bioeng. 2011;108(6):1441-9.   DOI
4 Yang Y, Tsifansky MD, Wu CJ, Yang HI, Schmidt G, Yeo Y. Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res. 2010;27(1): 151-60.   DOI
5 Yoo CG. Pathogenesis and pathophysiology of COPD. The Korean Journal of Medicine. 2009;77:383-400.
6 Lipworth BJ. Targets for inhaled treatment. Respir Med. 2000;94:S13-6.   DOI
7 Azarmi S, Lobenberg R, Roa WH, Tai S, Finlay WH. Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Dev Ind Pharm. 2008;34(9):943-7.   DOI
8 Molfino NA, Jeffery PK. Chronic obstructive pulmonary disease: Histopathology, inflammation and potential therapies. Pulm Pharmacol Ther. 2007;20(5):462-72.   DOI
9 Niewoehner DE, Kleinerman J, Rice DB. Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med. 1974;291(15):755-8.   DOI
10 Schaberg T, Haller H, Rau M, Kaiser D, Fassbender M, Lode H. Superoxide anion release induced by platelet-activating factor is increased in human alveolar macrophages from smokers. Eur Respir J. 1992;5(4):387-93.
11 Wright JL, Cosio M, Churg A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2008;295(1): L1-15   DOI
12 Wright JL, Sun JP. Effect of smoking cessation on pulmonary and cardiovascular function and structure: analysis of guinea pig model. J Appl Physiol. 1994;76(5):2163-8.
13 Yang IA, Clarke MS, Sim EH, Fong KM. Inhaled corticosteroids for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012;7:CD002991.
14 Foronjy R, D'Armiento J. The role of collagenase in emphysema. Respir Res. 2001;2(6):348-52.   DOI
15 Tanino M, Betsuyaku T, Takeyabu K, Tanino Y, Yamaguchi E, Miyamoto K, et al. Increased levels of interleukin-8 in BAL fluid from smokers susceptible to pulmonary emphysema. Thorax. 2002;57(5):405-11.   DOI
16 Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153 (2):530-4.   DOI
17 Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7:53.   DOI
18 Mannino DM. COPD: epidemiology, prevalence, morbidity and mortality, and disease heterogeneity. Chest 2002;121:121S-26S.   DOI
19 Mannino DM, Kiriz VA. Changing the burden of COPD mortality. Int J Chron Obstruct Pulmon Dis. 2006;1(3):219-33.
20 Statistics Korea. Cause of death statistics 2011. 2012; [2screens]. Available at: URL:http://kosis.kr/ups/ups_ 01List01.jsp?pubcode=YD. Accessed Sep 20, 2012.
21 Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6): 932-46.   DOI
22 Barnes PJ, Hansel TT. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet. 2004; 364(9438):985-96.   DOI
23 Jung SK, Jung HJ, Kim JD, Choi HY, Park MY, Park YC, et al. Pye-gye-nae-gwa-hak. Seoul: Nado. 2011:510-1.
24 Lee H, Kim Y, Kim HJ, Park S, Jang YP, Jung S, et al. Herbal Formula, PM014, Attenuates Lung Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease. Evid Based Complement Alternat Med. 2012;2012:769830. Epub 2012 Jun 12.
25 Lee JG, Yang SY, Kim MH, Namgung U, Park YC. Protective effects of Socheongryong-tang on Elastase-Induced Lung Injury. J Korean Oriental Med. 2011;32(4):83-99.
26 Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst. 2002;19(4-5):425-98.   DOI
27 Yoon JM, Park YC. Protective effects of Seonpyejeongcheon-tang on Elastase-induced Lung Injury. J Korean Oriental Med. 2010;31(1):84-101.
28 Choi HJ, Bang NY, Song BW, Kim NJ, Rhyu BH. Survey on the preference for the dosage forms of oriental herbal medicine. Kyunghee Medicine. 2004;20(1):46-57.
29 Derendorf H, Nave R, Drollmann A, Cerasoli F, Wurst W. Relevance of pharmacokinetics and pharmacodynamics of inhaled corticosteroids to asthma. Eur Respir J. 2006;28(5):1042-50.   DOI
30 Zhang J. Shang-han-za-bing-lun. Shijiazhuang. Hebei Kezue Jishu Chubanshe. 1994. p.27.
31 Jung S, Cho SJ, Moon KI, Kim HW, Kim BY, Cho SI. Effects of Socheongryong-Tang on Immunoglobulin Production in Asthmatic Mice. Kor. J. Herbology. 2008;23(1):23-8.
32 Kim KY, Lee JH, Kim YJ, Choi SY, Kim TH, Lyu YS, et al. Anti-allergic effects of Socheongyoung-tang on RBL-2H3 mast cell and mice-mediated allergy model. Korean J. Oriental Physiology & Pathology. 2007;21(5):1260-70.
33 Hwang WS, Lee JS, Choi JY, Jung HJ, Rhee HK, Jung SK. Two Cases of Chronic Sinusitis with Asthma Improved by Socheongryong-tang. J Korean Oriental Med. 2003;24(1):207-12.
34 Jung SK, Heo TS, Hwang WS, Ju CY, Kim YW, Jung HJ. The Effects of Sochongryong-tang on Serum IL-4, IL-5, and IFN-$\gamma$ in asthmatic Patients. J Korean Oriental Med. 2002;23(2): 70-7.
35 Ibrahim BM, Jun SW, Lee MY, Kang SH, Yeo Y. Development of inhalable dry powder formulation of basic fibroblast growth factor. Int J Pharm. 2010;385(1-2):66-72.   DOI
36 Tayab ZR, Hochhaus G. Pharmacokinetic/pharmacodynamic evaluation of inhalation drugs: application to targeted pulmonary delivery system s.Expert Opin Drug Deliv. 2005;2(3):519-32.   DOI
37 Thiel CG. Cascade impactor data and the lognormal distribution: nonlinear regression for a better fit. J Aerosol Med. 2002;15(4):369-78.   DOI
38 Nemzek JA, Bolgos GL, Williams BA, Remick DG. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm Res. 2001;50(10):523-7.   DOI
39 Hillery AM, Lloyd AW, Swarbrick J. Drug delivery and targeting; for pharmacists and pharmaceutical scientists. London:Taylor and Francis. 2001:2.
40 Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532-55.   DOI