• Title/Summary/Keyword: particle swarm

Search Result 723, Processing Time 0.03 seconds

Occlusion-Robust Marker-Based Augmented Reality Using Particle Swarm Optimization (파티클 집단 최적화를 이용한 가려짐에 강인한 마커 기반 증강현실)

  • Park, Hanhoon;Choi, Junyeong;Moon, Kwang-Seok
    • Journal of the HCI Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • Effective and efficient estimation of camera poses is a core method in implementing augmented reality systems or applications. The most common one is using markers, e.g., ARToolkit. However, use of markers suffers from a notorious problem that is vulnerable to occlusion. To overcome this, this paper proposes a top-down method that iteratively estimates the current camera pose by using particle swarm optimization. Through experiments, it was confirmed that the proposed method enables to implement augmented reality on severely-occluded markers.

Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization (BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측)

  • Punuhsingon, Charles S.C;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

Metaheuristics for reliable server assignment problems

  • Jang, Kil-Woong;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1340-1346
    • /
    • 2014
  • Previous studies of reliable server assignment considered only to assign the same cost of server, that is, homogeneous servers. In this paper, we generally deal with reliable server assignment with different server costs, i.e., heterogeneous servers. We formulate this problem as a nonlinear integer programming mathematically. Our problem is defined as determining a deployment of heterogeneous servers to maximize a measure of service availability. We propose two metaheuristic algorithms (tabu search and particle swarm optimization) for solving the problem of reliable server assignment. From the computational results, we notice that our tabu search outstandingly outperforms particle swarm optimization for all test problems. In terms of solution quality and computing time, the proposed method is recommended as a promising metaheuristic for a kind of reliability optimization problems including reliable sever assignment and e-Navigation system.

Improved Performance of Permanent Magnet Synchronous Motor by using Particle Swarm Optimization Techniques

  • Elwer, A.S.;Wahsh, S.A.
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This paper presents a modem approach for speed control of a PMSM using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the PI-Controller. The overall system simulated under various operating conditions and an experimental setup is prepared. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. Comparison between different controllers is achieved, using a PI controller which is tuned by two methods, firstly manually and secondly using the PSO technique. The system is tested under variable operating conditions. Implementation of the experimental setup is done. The simulation results show good dynamic response with fast recovery time and good agreement with experimental controller.

Classification of Induction Machine Faults using Time Frequency Representation and Particle Swarm Optimization

  • Medoued, A.;Lebaroud, A.;Laifa, A.;Sayad, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.170-177
    • /
    • 2014
  • This paper presents a new method of classification of the induction machine faults using Time Frequency Representation, Particle Swarm Optimization and artificial neural network. The essence of the feature extraction is to project from faulty machine to a low size signal time-frequency representation (TFR), which is deliberately designed for maximizing the separability between classes, a distinct TFR is designed for each class. The feature vectors size is optimized using Particle Swarm Optimization method (PSO). The classifier is designed using an artificial neural network. This method allows an accurate classification independently of load level. The introduction of the PSO in the classification procedure has given good results using the reduced size of the feature vectors obtained by the optimization process. These results are validated on a 5.5-kW induction motor test bench.

Particle Swarm Optimization Clustering Algorithm for cluster DNA Chip data (바이오칩 데이터의 군집화를 위한 Particle Swarm Optimization Clustering 알고리즘)

  • Meang, Bo-Yeon;Choi, Ok-Ju;Lee, Yoon-Kyung;Lee, Min-Soo;Yoon, Kyong-Oh;Choi, Hye-Yeon;Kim, Dae-Hyun;Lee, Keun-Il
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.60-63
    • /
    • 2008
  • 바이오칩을 이용하여 유전자를 분석하는데 이때 바이오 칩 분석 시스템을 이용한다. 바이오 칩은 유전자와 실험의 두 축으로 이루어져 있으며 바이오 칩 분석 시스템을 사용하여 바이오 칩에서 자료를 추출하고 필요한 정보를 얻기 위해 데이터를 분석하는 시스템이다. 데이터를 분석하는 기법 중 클러스터링을 사용하는데 유사한 유전자들을 찾아 내어 정해놓은 클러스터로 정의한다. 같은 클러스터 안에 있는 유전자들은 서로 비슷한 성질을 가지고 있기 때문에 사용자들은 이 바이오 칩 으로부터 나온 정보를 효율적이게 사용할 수 있다. 더욱 효율적으로 사용하기 위해 본 논문에서는 방대한 양의 데이터의 최적화에 효율적인 생태계 모방 알고리즘 Particle Swarm Optimization을 이용하여 데이터들을 클러스터링을 하여 분류하는 시스템을 기술하고 있다.

  • PDF

Prewarping Techniques Using Fuzzy system and Particle Swarm Optimization (퍼지 시스템과 Particle Swarm Optimization(PSO)을 이용한 Prewarping 기술)

  • Jang, Woo-Seok;Kang, Hwan-Il;Lee, Byung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.367-370
    • /
    • 2007
  • In this paper, we concentrate on the mask design problem for optical micro-lithography. The pre-distorted mask is obtained by minimizing the error between the designed output image and the projected output image. We use the particle swarm optimization(PSO) and fuzzy system to insure that the resulting images are identical to the desired image. Our method has good performance for the iteration number by an experiment.

  • PDF

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.