• Title/Summary/Keyword: particle size effect

Search Result 1,969, Processing Time 0.026 seconds

The Effect of Particle Size Distribution of the Nongraphitic Carbon on the Performance of Negative Carbon Electrode in Lithium Ion Secondary Battery (무정형 탄소의 입도분포에 따른 리튬이온이차전지의 탄소부극 특성)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.781-785
    • /
    • 1998
  • Material and electrochemical characteristics of petroleum coke of the nongraphitic carbon prepated with attrition milling for 6~48 hours and heat-treatment at $700^{\circ}C$ for 1 hour was investigated. The milling condition affects the particle size distribution, BET specific surface area and interlayer distance of petroleum cokes. Carbon electrode with petroleum cokes prepared at the milling time of 12~24 hours and having average particle size of $6{\sim}8{\mu}m$ showed best electrochemical characteristics form the investigation of cyclic voltammogram and charge-discharge characteristics.

  • PDF

Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar (비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안)

  • Jang, Kyung-Soo;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF

The Effect of Fluid Flow on the Primary Particle of Al-7wt%Si Alloy in Electromagnetic Stirring (전자교반시 Al-7wt%Si합금의 초정입자에 미치는 유동의 영향)

  • Lim, Sung-Chul;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.565-575
    • /
    • 1996
  • In this study, to gain the semi-solid alloy we employed the electromagnetic rotation by a induction motor of 3-phases and 2-poles for Al-7wt%Si alloy and observed the size of primary solid particle, distribution state of primary solid particle, the degree of sphericity, and fraction of primary solid for the evaluation of its results. The size of primary solid particle increases from $98{\mu}m$ to $118{\mu}m$ as solid fraction increases from 0.2 to 0.5. The degree of sphericity increased as the solid fraction increased. Solid particles obtained from the microstructures of isothermally held sample were coarsened and the degree of sphericity was enhanced as isothermal holding time increased. However, when the sample was stirred for more than 40min, solid particles merged together and liquid phase was entrapped within the cluster of solid particles. The size of primary solid particle was not changed significantly with the variation of input voltages by 160V over which solid particles began to merge together to be a large cluster of about $170{\mu}m$ at 180V. The standard deviation and the degree of sphericity were not changed significantly with the variation of input voltage.

  • PDF

Development of a Particle Bed Heat Exchanger(I) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Counterflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(I) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究) (대향류식(對向流式)))

  • Lim, J.G.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.119-126
    • /
    • 1990
  • In this study, the overall heat transfer coefficients are calculated on fluidized bed double pipe heat exchanger and single phase double pipe heat exchanger at the same condition. The effect of the particle size, its material, fluidizing velocity and static bed height on overall heat transfer coefficient has been investigated. The main conclusions obtained from the experiment are as follows. 1. The overall heat transfer coefficient of the fluidized bed heat exchanger is higher than that of single phase forced convective heat exchanger (maximum 2.3 times) 2. The value of the overall heat transfer coefficient increase with an increase in static bed height and decrease with an increase in particle size. 3. For the same particle size, the particle of low density can obtain higher overall heat transfer coefficient than that of high density.

  • PDF

The Dispersion Stability of $\alpha-Fe_2O_3$ Particulate Soil in the Anionic/Nonionic Mixed Surfactant Solution (음/비이온계 혼합계면활성제 용액에서 $\alpha-Fe_2O_3$ 입자의 분산안정성)

  • 정선영;강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.854-861
    • /
    • 2004
  • To estimate dispersion stability of particles in anionic and nonionic surfactant mixed solution, suspending power was examined as functions of duration time of suspension, ionic and nonionic surfactant mixed ratio, surfactant concentration, kinds of electrolyte, ionic strength and mole numbers of oxyethylene additions to nonionic surfactant using $\alpha$-Fe$_2$O$_3$ particle as the model of particulate soil. The suspending power of anionic and nonionic surfactant mixed solution was relatively higher than that of anionic and nonionic surfactant single solution regardless of solution concentration. The suspending power was gradually decreased with increasing duration time of suspension. In the absence of electrolyte, the effect of surfactant concentration on suspending power was small but in solution with electrolyte, suspending power was lowest at 1 % surfactant concentration. With 1${\times}$10$^{-3}$ ionic strength and polyanionic electrolyte in solution, the suspending power was high but effects of oxyethylene mole number to nonionic surfactant on suspending power was small. Generally the suspending power was gradually increased with decreasing the particle size. Hence the suspending power was inversely related to the particle size.

Study on Aerosol Deposition Behavior of Cu Films According to Particle Size (입자 사이즈에 따른 Cu 필름의 에어로졸 성막 거동에 대한 연구)

  • Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The effect of particle sizes on the aerosol deposition (AD) of Cu films is investigated in order to understand the deposition behaviors of metal powder during the AD process. The Cu coatings fabricated by using $2{\mu}m$ Cu powders had a dense microstructure, a high deposition rate ($1.6{\pm}0.2{\mu}m/min$), and low resistance ($9.42{\pm}0.4{\mu}{\Omega}{\cdot}cm$) compared to that from using Cu powder with a particle size greater than $5{\mu}m$. Also, from estimating the internal micro-strain of Cu films, the Cu coatings fabricated by using $2{\mu}m$ Cu particles exhibited a high micro-strain value of $3.307{\times}10^{-3}$. On the other hand, the strain of Cu coatings fabricated with $5{\mu}m$ particles was decreased to $2.76{\times}10^{-3}$. These results seem to show that the impacted Cu particles are compressed and flattened by shock waves, and that their bonding is associated with the high internal micro-strain caused by plastic deformation.

The Effect of Different Particle Size from PAHs Contaminated Sediment by Ultrasonic Irradiation (PAHs로 오염된 침전물의 초음파 처리시 입자크기가 미치는 영향)

  • Na, Seung-Min;Khim, Jee-Hyeong;Cui, Ming-Can;Ahn, Yun-Gyong;Weavers, Linda K.
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.379-387
    • /
    • 2010
  • Sediments of Little Scioto (LS) River in Ohio was contaminated by poor disposal of creosote from Baker Wood Creosoting Facility. Among the primary compounds of creosote, Polycyclic Aromatic Hydrocarbons (PAHs) are the most common ingredient PAHs are known for toxic, carcinogenic and mutagenic compounds. There are many difficulties to remove the PAHs in nature environment because their characteristics are having a less water-solubility, volatile and low mobility properties as increasing the molecular weight. The generation of hydroxyl radicals (${\cdot}OH$) and hydrogen peroxide ($H_2O_2$) forms as well as high temperature (5000 K) and pressure (1000 atm) by a physico-chemical effects of ultrasound during a cavitation collapse can promote the degradation and desorption of PAHs in sediment And it can also produces shock wave and microjets which are able to change the size and surface of particle in solid-liquid system as one of physical effects. Therefore, we explored to understand the role of particle size, the effect of elimination for PAHs concentration by ultrasound and optimize the conditions for ultrasonic treatment. The condition of various size of particles (> $150{\mu}m$, < $150{\mu}m$) and solid-liquid ratio (12.5g/L, 25g/L) for the treatment was considered and ultrasonic power (430 W/L) with liquid - hexane extraction and microwave extraction method were applied after ultrasound treatment.

Effect of Roasting on Particle Size, Water-holding Capacity, and Viscosity of Cereal-based Sunsik (현미 로스팅(Roasting)이 선식의 입자 크기와 물 결합력 및 점도에 미치는 영향)

  • Koh, Eunmi;Mun, Saehun;Surh, Jeonghee
    • Korean journal of food and cookery science
    • /
    • v.30 no.5
    • /
    • pp.526-530
    • /
    • 2014
  • The effect of roasting on particle size distribution, water-holding capacity, and viscosity of sunsik was investigated in this study using non-roasted one as control. Roasting increased the size of particles in sunsik, in particular, particles larger than $1{\mu}m$ in diameter, indicating that roasted sunsik is likely to sediment faster, thereby decreasing the time to maintain dispersibility when mixing with water. Roasting also increased the water-holding capacity of sunsik, indicating that polymerization occurred greater than a pyrolysis during roasting, leading to increased viscosity in roasted sunsik. These results indicate that the roasting affected the dispersibility and viscosity of sunsik by increasing particle size and water-holding capacity, respectively.

Experimental and Numerical Investigation of the Effect of Load and Speed of T-GDI Engine on the Particle Size of Blow-by Gas and Performance of Oil Mist Separator (T-GDI 엔진의 속도 및 하중이 블로우바이 가스의 오일입자 크기와 오일분리기 성능에 미치는 영향에 대한 실험 및 수치적 연구)

  • Jeong, Soo-Jin;Oh, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.162-169
    • /
    • 2020
  • The worldwide focus on reducing the emissions, fuel and lubricant consumption in T-GDI engines is leading engineers to consider the crankcase ventilation and oil mist separation system as an important means of control. In today's passenger cars, the oil mist separation systems mainly use the inertia effect (e.g. labyrinth, cyclone etc.). Therefore, this study has investigated high efficiency cylinder head-integrated oil-mist separator by using a compact multi-impactor type oil mist separator system to ensure adequate oil mist separation performance. For this purpose, engine dynamometer testing with oil particle efficiency measurement equipment and 3D two-phase flow simulation have been performed for various engine operating conditions. Tests with an actual engine on a dynamometer showed oil aerosol particle size distributions varied depending on operating conditions. For instance, high rpm and load increases bot only blow-by gases but the amount of small size oil droplets. Submicron-sized particles (less than 0.5 ㎛) were also observed. It is also found that the impactor type separator is able to separate nearly no droplets of diameter lower than 3 ㎛. CFD results showed that the complex aerodynamics processes that lead to strong impingement and break-up can strip out large droplets and generate more small size droplets.