Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.4.235

Study on Aerosol Deposition Behavior of Cu Films According to Particle Size  

Lee, Dong-Won (Material Technology Center, Korea Testing Laboratory)
Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.4, 2017 , pp. 235-240 More about this Journal
Abstract
The effect of particle sizes on the aerosol deposition (AD) of Cu films is investigated in order to understand the deposition behaviors of metal powder during the AD process. The Cu coatings fabricated by using $2{\mu}m$ Cu powders had a dense microstructure, a high deposition rate ($1.6{\pm}0.2{\mu}m/min$), and low resistance ($9.42{\pm}0.4{\mu}{\Omega}{\cdot}cm$) compared to that from using Cu powder with a particle size greater than $5{\mu}m$. Also, from estimating the internal micro-strain of Cu films, the Cu coatings fabricated by using $2{\mu}m$ Cu particles exhibited a high micro-strain value of $3.307{\times}10^{-3}$. On the other hand, the strain of Cu coatings fabricated with $5{\mu}m$ particles was decreased to $2.76{\times}10^{-3}$. These results seem to show that the impacted Cu particles are compressed and flattened by shock waves, and that their bonding is associated with the high internal micro-strain caused by plastic deformation.
Keywords
Aerosol deposition; Copper film; Copper particle; Particle size; Deposition behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. T. Lee, S. Hayashi, T. Hirai, and K, Hiraga, Mater. Trans., 34, 573 (1993). [DOI: http://doi.org/10.2320/matertrans1989.34.573]   DOI
2 J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). [DOI: http://doi.org/10.1111/j.1551-2916.2006.01030.x]   DOI
3 J. Akedo, J. Therm. Spray Technol., 17, 181 (2008). [DOI: http://doi.org/10.1007/s11666-008-9163-7]   DOI
4 Y. Imanaka, N. Hayashi, M. Takenouchi, and J. Akedo, J. Eur. Ceram. Soc., 27, 2789 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.11.055]   DOI
5 J. M. Oh and S. M. Nam, Jpn. J. Appl. Phys., 48, 09KA07 (2009). [DOI: https://doi.org/10.1143/jjap.48.09ka07]
6 J. Ryu, D. S. Park, B. D. Hahn, J. J. Choi, W. H. Yoon, K. Y. Kim, and H. S. Yun, Appl. Catal. B, 83, 1 (2008). [DOI: https://doi.org/10.1016/j.apcatb.2008.01.020]   DOI
7 T. Fujihara, M. Tsukamoto, N. Abe, S. Miyake, T. Ohji, and J. Akedo, Vacuum, 73, 629 (2004). [DOI: https://doi.org/10.1016/j.vacuum.2003.12.082]   DOI
8 D. W. Lee, M. C. Shin, Y. N. Kim, and J. M. Oh, Ceram. Int., 43, 1044 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2016.10.037]   DOI
9 J. Akedo and M. Lebedev, Jpn. J. Appl. Phys., 41, 6980 (2002). [DOI: https://doi.org/10.1143/jjap.41.6980]   DOI
10 D. W. Lee, H. J. Kim, and S. M. Nam, J. Korean Phys. Soc., 57, 1115 (2010). [DOI: https://doi.org/10.3938/jkps.57.1115]   DOI
11 D. M. Chun and S. H. Ahn, Acta Mater., 59, 2693 (2011). [DOI: https://doi.org/10.1016/j.actamat.2011.01.007]   DOI
12 G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953). [DOI: https://doi.org/10.1016/0001-6160(53)90006-6]   DOI
13 D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun, and S. M. Nam, J. Am. Ceram. Soc., 94, 3131 (2011). [DOI: http://doi.org/10.1111/j.1551-2916.2011.04493.x]   DOI
14 Y. H. Kim, J. W. Lee, H. J. Kim, Y. H. Yun, S. M. Nam, Ceram. Int., 38S, S201 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2011.04.083]
15 D. W. Lee, O. Y. Kwon, W. J. Cho, J. K. Song, and Y. N. Kim, Nanoscale Res. Lett., 11, 1 (2016). [DOI: https://doi.org/10.1186/s11671-016-1378-9]   DOI