• Title/Summary/Keyword: particle separation

Search Result 480, Processing Time 0.024 seconds

Application of Electromagnetic Fields to Improve the Removal Rate of Radioactive Corrosion Products

  • Kong, Tae-Young;Lee, Kun-Jai;Song, Min-Chul
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.549-558
    • /
    • 2004
  • TTo comply with increasingly strict regulations for protection against radiation exposure, many nuclear power plants have been working ceaselessly to reduce and control both the radiation sources within power plants and the radiation exposure experienced by operational and maintenance personnel. Many research studies have shown that deposits of irradiated corrosion products on the surfaces of coolant systems are the main cause of occupational radiation exposure in nuclear power plant. These corrosion product deposits on the fuel-clad surface are also known to be main factors in the onset of axial offset anomaly (AOA). Hence, there is a great deal of ongoing research on water chermistry and corrosion processes. In this study, a magnetic filter with permanent magnets was devised to remove the corrosion products in the coolant stream by taking advantage of the magnetic properties of the corrosion products demonstrated a removal efficiency of over 90% for particles above 5${\mu}m$. This finding led to the construction of an electromagnetic device that causes the metallic particulates to flocculate into larger aggregates of about 5${\mu}m$ in diameter by using a novel application of electromagnetic flocculation on radioactive corrosion products.

Characterization of the Nano-material U Membranes with Excellent Fouling Resistance (막 오염 저항성이 우수한 나노 소재 정밀 여과막의 특성 연구)

  • Choi Jeong Hwan;Lee Jeong Bin;Kim In-chul
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • In the MBR process, the membrane fouling occurs seriously on the membrane surface. In general, the membrane fouling is attributed to factors such as deposition or adhesion of sludge floc. The occurrence of fouling is a main cause of a decrease in membrane module fluk. At this study, our MBR membrane is manufactured by nano-particle with excellent anti-fouling character. The fine nano-material which can repel the sludge Hoc from the membrane surface is distributed in the membrane surface. We confirm anti-fouling effect, test continuously in the pilot site.

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

Simultaneous Determination of Cysteamine and Cystamine in Cosmetics by Ion-Pairing Reversed-Phase High-Performance Liquid Chromatography

  • Kim, Yejin;Na, Dong Hee
    • Toxicological Research
    • /
    • v.35 no.2
    • /
    • pp.161-165
    • /
    • 2019
  • Cysteamine has been used in cosmetics as an antioxidant, a hair straightening agent, and a hair waving agent. However, recent studies indicate that cysteamine can act as an allergen to hairdressers. The objective of this study was to develop and validate a simple and effective reversed-phase high-performance liquid chromatography (RP-HPLC) method for the measurement of cysteamine and its dimer, cystamine. Sodium 1-heptanesulfonate (NaHpSO) was used as an ion-pairing agent to improve chromatographic performance. Separation was performed on a Gemini C18 column ($250mm{\times}4.6mm$, $5{\mu}m$ particle size) using a mobile phase composed of 85:15 (v/v) 4 mM NaHpSO in 0.1% phosphoric acid:acetonitrile. UV absorbance was monitored at 215 nm. The RP-HPLC method developed in this study was validated for specificity, linearity, limit of detection, limit of quantitation, precision, accuracy, and recovery. Cysteamine and cystamine were chromatographically resolved from other reducing agents such as thioglycolic acid and cysteine. Extraction using water and chloroform resulted in the recovery for cysteamine and cystamine ranging from 100.2-102.7% and 90.6-98.7%, respectively. This validated RP-HPLC method would be useful for quality control and monitoring of cysteamine and cystamine in cosmetics.

Synthesis and Application of Magnetoplasmonic Nanoparticles (마그네토플라즈모닉 나노 자성 입자의 합성과 응용)

  • Park, Sejeong;Hwang, Siyeong;Jung, Seonghwan;Gwak, Juyong;Lee, Jaebeom
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.429-434
    • /
    • 2021
  • Magnetic nanoparticles have a significant impact on the development of basic sciences and nanomedical, electronic, optical, and biotech industries. The development of magnetic structures with size homogeneity, magnetization, and particle dispersibility due to high-quality process development can broaden their utilization for separation analysis, structural color optics using surface modification, and energy/catalysts. In addition, magnetic nanoparticles simultaneously exhibit two properties: magnetic and plasmon resonance, which can be self-assembled and can improve signal sensitivity through plasmon resonance. This paper reports typical examples of the synthesis and properties of various magnetic nanoparticles, especially magnetoplasmonic nanoparticles developed in our laboratory over the past decade, and their optical, electrochemical, energy/catalytic, and bio-applications. In addition, the future value of magnetoplasmonic nanoparticles can be reevaluated by comparing them with that reported in the literature.

Attrition Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 마모특성)

  • Ryu, Hojung;Lee, Dongho;Lee, Seungyong;Jin, Gyoungtae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.2
    • /
    • pp.122-130
    • /
    • 2014
  • Attrition characteristics of WGS catalysts for pre-combustion $ CO_2$ capture were investigated to check attrition loss of those catalysts, to check change of particle size distribution during attrition tests, and to determine solid circulation direction of WGS catalysts in a SEWGS system. The cumulative attrition losses of two catalysts increased with increasing time. However, attrition loss under humidified condition was lower than that under non-humidified condition case for long-term attrition tests. Between two catalysts, attrition loss of PC-29 catalyst was higher than that of commercial catalyst for long-term attrition tests. However, the commercial catalyst generated much more fines than PC-29 catalyst during attrition. Therefore, we conclude that the PC-29 catalyst is more suitable for fluidized bed operation if we take into account the separation efficiency of cyclone. Based on the results from the tests for the effect of humidity on the attrition loss, we selected solid circulation direction from SEWGS reactor to regeneration reactor because the SEWGS reactor contains more water vapor than regeneration reactor.

Effect of NCO/OH Ratio and Chain Extender Content on Properties of Polycarbonate Diol-based Waterborne Polyurethane

  • Kim, Eun-jin;Kwon, Yong Rok;Chang, Young-Wook;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.13-19
    • /
    • 2022
  • Polycarbonate diol-based waterborne polyurethane (WPU) was prepared by prepolymer mixing process. The prepolymer mixture contained the polycarbonate diol, isophorone diisocyanate (IPDI), dimethylol propionic acid, triethylamine, and ethylenediamine (EDA). The NCO/OH ratio in the prepolymer was adjusted by controlling the molar ratio of IPDI, and its effects on the properties of WPU were studied. The structure of WPU was characterized by fourier transform infrared spectroscopy. The average particle size increased and viscosity decreased with increasing NCO/OH ratio and EDA content in WPU. The reduced phase separation between soft and hard segments increased glass transition temperature. The reduction in the thermal decomposition temperature could be attributed to the low bond energy of urethane and urea groups, which constituted the hard segment. Additionally, the polyurethane chain mobility was restricted, elongation decreased, and tensile strength increased. The hydrogen bond between the hard segments formed a dense structure that hindered water absorption.

Evaluation of Performance Characteristics by Dual Arrangement of Mini-hydrocyclone Separators (미니 하이드로 사이클론 분리기의 이중배열을 통한 성능특성 평가)

  • Kwon, Je-Young;Kim, Seung-Kyung;Hong, Jun-Gyu;Yi, Hyung-Wook;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.17-23
    • /
    • 2021
  • A cyclone is a dust-separating mechanism that works on the principle of centrifugal force. The performance of a cyclone is evaluated using pressure loss and collection efficiency. A multi-cyclone arrangement is used to improve the collection efficiency within a limited area. In this study, experiments and numerical analyses were conducted on a dual arrangement of mini-hydrocyclone separators, which was fabricated using 3D printing. The experiment was performed at an inlet flow rate of 0.7 m/s, and alumina powder with a particle size of 0.5, 15, and 50 ㎛. ANSYS FLUENT, was used for the numerical analysis. The reliability of the numerical analysis was verified through a comparison with the experimental results. The errors in the experiment and numerical analysis were confirmed to be 2% at the outlet flow rate.

Characteristics in Densities and Shapes of Various Particles Produced by Friction between Tire Tread and Road Surface

  • Jung, Uiyeong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • A large amount of particles on the roads is produced by friction between the vehicles and the road surface and by inflow from outside. The type of these particles affects the abrasion behavior of tire tread. In this study, road dust collected at a bus stop was separated by size, and the particles with sizes of 106-212 mm were analyzed. The particles were separated by density using NaI and NaBr aqueous solutions with densities in the range of 1.10-1.80 g/cm3 with the 0.10 g/cm3 interval. In the road dust sample, the following particle types were found: tire-road wear particles (TRWPs), asphalt pavement wear particles (APWPs), plant-related particles (PRPs), road paint wear particles (RPWPs), and plastic particles (PPs). The densities of TRWPs, APWPs, PRPs, and RPWPs were 1.20-1.80, >1.60, >1.10, and >1.40 g/cm3, respectively, while PPs were found in all density ranges. Additionally, many small mineral particles were observed on the particles. Order of the relative content of the particles was PRP > TRWP > APWP ~ RPWP > PP. APWPs that were stuck to TRWP could be removed by chloroform treatment. The shapes of the particles were characterized using their magnified images.

Remote handling systems for the ISAC and ARIEL high-power fission and spallation ISOL target facilities at TRIUMF

  • Minor, Grant;Kapalka, Jason;Fisher, Chad;Paley, William;Chen, Kevin;Kinakin, Maxim;Earle, Isaac;Moss, Bevan;Bricault, Pierre;Gottberg, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1378-1389
    • /
    • 2021
  • TRIUMF, Canada's particle accelerator centre, is constructing a new high-power ISOL (Isotope Separation On-Line) facility called ARIEL (Advanced Rare IsotopE Laboratory). Thick porous targets will be bombarded with up to 48 kW of 480 MeV protons from TRIUMF's cyclotron, or up to 100 kW of 30 MeV electrons from a new e-linac, to produce short-lived radioisotopes for a variety of applications, including nuclear astrophysics, fundamental nuclear structure and nuclear medicine. For efficient release of radioisotopes, the targets are heated to temperatures approaching 2000 ℃, and are exposed to GSv/h level radiation fields resulting from intended fissions and spallations. Due to these conditions, the operational life for each target is only about five weeks, calling for frequent remote target exchanges to limit downtime. A few days after irradiation, the targets have a residual radiation field producing a dose rate on the order of 10 Sv/h at 1 m, requiring several years of decay prior to shipment to a national disposal facility. TRIUMF is installing new remote handling infrastructure dedicated to ARIEL, including hot cells and a remote handling crane. The system design applies learnings from multiple existing facilities, including CERN-ISOLDE, GANIL-SPIRAL II as well as TRIUMF's ISAC (Isotope Separator and ACcelerator).